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Tangle Sum Tangle Product Rational tangle (57 4.3, 2, 1) Subtangle Planar Diagram Code Non-Algebraic Diagram Decomposition
Motivation from Biology: 2/3) 0 NW 2 NW 5 NW 4 SE (P : 0/
Molecular interactions involving DNA (3/2) % (2/1) 1NE 0NE 3SW 5 NE (P :0)
| | (4/1) 0SE 4NW 5SE 2SE (P:0)
can be modeled using knot theory. — — 1/3) INE 0SW 1SW 5SW (P 1)
Figure 1: Protein DNA complex (AFM). 371 1%y (3/7) LSE 25W 35E 45W(P: 1)
225 Constellation Notation
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Solution from Mathematics: Figure 4: Operations of tangle sum (horizontal join) and tangle
. . . . roduct (vertical join). Rational tangles are built using sums and : ~ . .
These interactions describe a system of tangle equations P ( . join) * NS | 5 Figure 6: Example of a subtangle decomposition for a non-algebraic
products of integer tangles, described by a twist vector (nq,--- ,ng). . . . . . .
diagram and corresponding notations. This configuration of subtan-

modeling entwined strings of DNA.

oles matches the first constellation graph of Figure |7

Simple tangles can be stacked together like blocks to build
more complicated diagrams (Figure 4). Rational tangles,

Non-algebraic tangles can be decomposed into algebraic
subtangles (Figure 6). This decomposition is described by
a subtangle planar diagram notation encoding the

described by a twist vector (nj,--- ,nz), are in bijection
with Q U {oo} via the continued fraction

0 1 _ P adjacency. list of a g].faph. Non-algebraic Subtangﬁ._e grapﬁns
Nh—1+ -+ 5 q have special properties and are known as constellations.
Figure 2: Example of a system of tangle equations with solution. Tangles are divided into families based on their structure. .
A tangle consists of multiple entwined strings embedded Constellations
inside of a ball. They are best interpreted as the building Special Types of Tangles A k+1 constellation (C, p) consists of a graph C with
blocks of knots.
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Prototype database of tangles i1s accessible at

L A L 2 2, 1 1, 2
I 109 3t3+3 (3H3)*(3+3)

@ @ @ @ @ @ @ @ Figure 5: Examples of tangle families by increasing generalizability.
- 1 - - - - : - e An integer tangle is a horizontal sequence of twists.
1 il i) 4 8 i) 8 3
e A rational tangle is constructed from a sequence of al-
ternately horizontal and vertical twists (n, -+ ,ng).
2 7 3 7 4 7 D 7

e A Montesinos tangle is a sum of rational tangles.

: - - 3 I 1 7 5
@ @ @ @ @ @ @ @ e An algebraic tangle is constructed from any combina-

n I " I 2% 2 0 tion of sums and products of rational tangles.

: : : algebraic diagrams. With sums and products, these can be used to
Figure 3: Table of 5 crossing tangles, excluding mirror images. Blue {Integer} C {Ratl@nal} C {MOHteSlﬂOS} C {Algebralc} degscribe Al ngon—algebraic tangle diagrims with at most 9 crossings

http://www.nick-connolly.com/tangles.
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Figure 7: The first 10 constellation graphs for constructing non-
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denotes integer, red for rational, and green for generalized Montesinos. . . .
e Otherwise, a tangle is non-algebraic.
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