Quantum Information

Quantum Error Correcting Codes

The Toric Code

References

An Introduction to Quantum Error Correction

Nicholas Connolly

INRIA

November 4, 2022

Quantum Information

Quantum Error Correcting Codes

The Toric Code

References

Table of Contents

Classical Codes

Quantum Information

Quantum Error Correcting Codes

The Toric Code

Quantum Error Correcting Codes

The Toric Code

References

Coding Theory

Coding theory [4] is concerned with the study of how to **encode information** for transmission through a **communication channel**.

Physical communication channels are always subject to the presence of **noise** which can disrupt the information.

Quantum Error Correcting Codes

The Toric Code

References

Classical Bits and Bit-flip Errors

In a **classical** setting, information is represented using strings of **bits**, each of which has value 0 or 1.

010011000111

A noisy channel can lead to **bit-flip errors** during transmission, where the value of a bit changes from 0 to 1 or from 1 to 0.

010**1**110001**0**1

Quantum Error Correcting Codes

The Toric Code

References

Binary Symmetric Channel

A binary symmetric channel is a noisy channel in which the value of each transmitted bit can be flipped with probability $0 \le p \le 1$.

By encoding the information using **error correcting codes**, many mistakes in a transmitted message can be identified and fixed.

Quantum Error Correcting Codes

The Toric Cod

References

Linear Codes

A (binary) **linear code** C is a vector subspace of \mathbb{F}_2^n .

- **1**. The vectors in *C* are referred to as **code words**.
- 2. C has length n, the number of bits in a code word.
- **3.** C has **dimension** k as a subspace of \mathbb{F}_2^n .

Example: A code of length 3 and dimension 2 as a subspace of \mathbb{F}_2^3

$$\mathbb{F}_2^3 = \left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

$$C = \langle \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \rangle = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\} = \operatorname{ker}(\begin{bmatrix} 0 & 0 & 1 \end{bmatrix})$$

Quantum Error Correcting Codes

The Toric Code

References

Parity Check Matrices

Equivalently, a linear code C may be defined as the *kernel* of a **parity check matrix** H. In other words, C = ker(H).

$$v \in C$$
 if and only if $Hv = 0$ (modulo 2)

Example: 3-bit Repetition Code

$$H = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \qquad C = \ker(H) = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

For example, $v = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \notin C$ since $Hv = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \neq 0$.
(All bits in a vector of the repetition code have the same value.)

Quantum Error Correcting Codes

The Toric Code

References

Error Detection

The repetition code is an example of an error detecting code.

 $\begin{array}{c} \underset{x}{\text{message sent}} \xrightarrow{\text{noisy channel}} \xrightarrow{\text{message received}} \\ x \xrightarrow{} x + e \xrightarrow{} x' \\ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} & \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} & \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \end{array}$

Noise can be represented by adding an **error vector** e to the original message x. If $Hx' \neq 0$, then we know there is an error.

$$Hx' = H(x+e) = Hx + He = He$$

Note: If He = 0, then *e* is an undetectable error!

Quantum Error Correcting Codes

The Toric Code

References

Error Correction and Syndrome Analysis

Hx' = Hx + He = He = s

The value He = s is known as the **syndrome** of an error *e*. The goal of syndrome analysis is to compute *e* given *s*. This allows the original message to be recovered by canceling out *e*.

$$x'+e = x+e+e = x$$

The linear algebra problem He = s can be solved, for example, using Gaussian elimination.

In general, there exists more than one error satisfying He = s, but we assume that |e| is small ("maximum likelihood decoding").

Quantum Error Correcting Codes

The Toric Code

References

Minimum Distance

The **Hamming weight** of a binary vector is the number of nonzero entries.

$$w(\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T) = 2$$

The distance between two vectors is the weight of their sum.

$$d(\begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}^T) = w(\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}^T) = 2$$

The **minimum distance** of a code C is defined to be the smallest possible distance between any two code words in C.

min dist(C) = min{
$$d(v_1, v_2) : v_1, v_2 \in C$$
}

A binary code with length n, dimension k, and minimum distance d is denoted as an $[n, k, d]_2$ code.

Example: The 3-bit repetition code is a $[3, 1, 3]_2$ code.

Quantum Error Correcting Codes

The Toric Code

References

Tanner Graphs

The **Tanner graph** of a linear code C = ker(H) is the *bipartite graph G* defined using *H* as an *incidence matrix*.

- The columns of *H* correspond to *bit nodes* in *G*.
- The rows of *H* correspond to *check nodes* in *G*.
- There exists an edge between bit *i* and check *j* in *G* if and only if the entry in cell *i*, *j* of *H* is nonzero.

Quantum Information

Quantum Error Correcting Codes

The Toric Code

References

Table of Contents

Classical Codes

Quantum Information

Quantum Error Correcting Codes

The Toric Code

Quantum Error Correcting Codes

The Toric Cod

References

Qubits

Whereas classical information is represented using bits, **quantum information** is represented using **qubits** ("quantum bits").

A classical bit has only two possible states: 0 or 1. A qubit $|\psi\rangle$ can be represented as a *superposition* of states.

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
 $\alpha, \beta \in \mathbb{C}$ where $|\alpha|^2 + |\beta|^2 = 1$

A qubit $|\psi\rangle$ can be thought of as a unit vector in a 2-dimensional complex vector space with a basis formed by the states $|0\rangle$ and $|1\rangle$.

Example: $|+\rangle$ and $|-\rangle$ states

$$|+
angle = rac{|0
angle + |1
angle}{\sqrt{2}} \qquad |-
angle = rac{|0
angle - |1
angle}{\sqrt{2}}$$

Quantum Information

Quantum Error Correcting Codes

The Toric Code

References

Quantum Gates

Using the two computational basis states $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, a quantum state $|\psi\rangle$ can be represented as a linear combination.

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle = \alpha \begin{bmatrix} 1\\0 \end{bmatrix} + \beta \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} \alpha\\\beta \end{bmatrix}$$

Similar to logic gates for classical bits, **quantum gates** can be used to describe how to move one quantum state to another. Quantum gates on a single qubit can be represented using 2×2 matrices.

Example: Quantum NOT Gate: $X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$X|\psi\rangle = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \beta \\ \alpha \end{bmatrix} = \beta|0
angle + \alpha|1
angle$$

Weird Difficulties with Quantum Information

Qubits behave very differently from classical bits.

1. No cloning theorem

Quantum states cannot be duplicated.

2. Continuous errors

A continuum of errors may occur on a single qubit.

3. Measurements destroy quantum information Measuring a qubit in state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ collapses the state to either 0 or 1 (with probabilities $|\alpha|^2$ and $|\beta|^2$).

Quantum error correction must work around these constraints.

Quantum Error Correcting Codes

The Toric Code

References

Pauli Operators

A quantum gate U acting on a state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ must be unitary $(U^{\dagger}U = I)$ to preserve the condition that $|\alpha|^2 + |\beta|^2 = 1$.

Four important quantum gates are known as the Pauli Operators.

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \qquad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Any transformation of a quantum state (including noise) can be described using *only* linear combinations of Pauli operators .

Example: Hadamard Gate H

$$H \equiv \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{\sqrt{2}} X + \frac{1}{\sqrt{2}} Z$$

Quantum Information

Quantum Error Correcting Codes

The Toric Code

References

Quantum Bit-Flips and Phase-Flips

The I Pauli operator is identity.

$$I|\psi
angle = |\psi
angle$$

The X Pauli operator describes a quantum *bit-flip*.

$$X|0
angle = egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} egin{bmatrix} 1 \ 0 \end{bmatrix} = egin{bmatrix} 0 \ 1 \end{bmatrix} = |1
angle$$

The Z Pauli operator describes a quantum phase-flip.

$$Z|+
angle = rac{Z(|0
angle+|1
angle)}{\sqrt{2}} = rac{|0
angle-|1
angle}{\sqrt{2}} = |-
angle$$

The Y Pauli operator combines both a bit-flip and a phase-flip.

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} = i \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = iXZ$$

Quantum Error Correcting Codes

The Toric Code

References

Discretization of Quantum Errors

The effect of noise in a quantum channel can be interpreted as a transformation of a quantum state described by an operator E.

$$|\psi\rangle \xrightarrow{\text{noise}} E|\psi\rangle$$

E can be expanded as a linear combination of the Pauli operators.

$$E = e_0 I + e_1 X + e_2 Z + e_3 X Z$$

In the single qubit case, the quantum state $E|\psi\rangle$ is a superposition of four possible terms. These can be exploited for error correction.

$$E|\psi\rangle = e_0|\psi\rangle + e_1X|\psi\rangle + e_2Z|\psi\rangle + e_3XZ|\psi\rangle$$

Measuring the **syndrome** of $E|\psi\rangle$ collapses the state onto one of these four possibilities and tells us which correction to apply!

Quantum Error Correcting Codes

The Toric Code

References

Multiple Qubits

A state in a two qubit system, for example, can be expressed as:

$$|\psi\rangle = \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle.$$

This notation is a shorthand for *tensor products* of single qubit states. More generally, a multiple qubit state has the form:

$$|0000
angle = |0
angle \otimes |0
angle \otimes |0
angle \otimes |0
angle.$$

Tensor products of Pauli operators can be applied linearly.

$$\begin{array}{lll} X_1 X_3 |0000\rangle & = & (X \otimes I \otimes X \otimes I)(|0\rangle \otimes |0\rangle \otimes |0\rangle \otimes |0\rangle) \\ & = & X |0\rangle \otimes I |0\rangle \otimes X |0\rangle \otimes I |0\rangle \\ & = & |1\rangle \otimes |0\rangle \otimes |1\rangle \otimes |0\rangle \\ & = & |1010\rangle \end{array}$$

Quantum Information

Quantum Error Correcting Codes

The Toric Code

References

Table of Contents

Classical Codes

Quantum Information

Quantum Error Correcting Codes

The Toric Code

Quantum Information

Quantum Error Correcting Codes

The Toric Code

References

The Three Qubit Bit-Flip Code

Consider a 3-qubit quantum code with basis states $\{|000\rangle, |111\rangle\}$, with states superpositions of the form $|\psi\rangle = \alpha |000\rangle + \beta |111\rangle$. A bit-flip (X Pauli error) occurring on the first qubit has the form:

$$X_1|\psi\rangle = \alpha X_1|000\rangle + \beta X_1|111\rangle = \alpha|100\rangle + \beta|011\rangle.$$

A bit-flip on at most one qubit is detected using operators $Z_i Z_j$.

$$Z_i Z_j |\psi\rangle = \begin{cases} |\psi\rangle & \text{if qubit } i \text{ and } j \text{ have the same value} \\ -|\psi\rangle & \text{otherwise} \end{cases}$$

Note that $Z_i Z_j$ leaves states $|\psi\rangle = \alpha |000\rangle + \beta |111\rangle$ fixed. The syndrome measurement of an error $E|\psi\rangle$ is computed as:

$$\langle \psi | E^{\dagger} Z_{i} Z_{j} E | \psi \rangle = \begin{cases} \langle \psi | E^{\dagger} E | \psi \rangle = 1 & \text{if } Z_{i} Z_{j} E | \psi \rangle = E | \psi \rangle \\ - \langle \psi | E^{\dagger} E | \psi \rangle = -1 & \text{if } Z_{i} Z_{j} E | \psi \rangle = -E | \psi \rangle \end{cases}$$

Syndrome Analysis of the Three Qubit Bit-Flip Code

The effect of noise on a state $|\psi\rangle$ is modeled by an operator *E*.

$$|\psi\rangle = \alpha |000\rangle + \beta |111\rangle \qquad \stackrel{\text{noise}}{\longrightarrow} \qquad E|\psi\rangle$$

If $E \in \{I, X_1, X_2, X_3\}$, this can be inferred by analyzing the syndrome measurements of the operators Z_1Z_2 and Z_2Z_3 .

E	$\langle \psi E^{\dagger} Z_1 Z_2 E \psi \rangle$	$\langle \psi E^{\dagger} Z_2 Z_3 E \psi \rangle$
1	+1	+1
X_1	-1	+1
X_2	-1	-1
<i>X</i> ₃	+1	-1

Syndrome measurement does *not* reveal information about α and β , only about *E*. A correction to $E|\psi\rangle$ is applied based on this.

References

Pauli Group on *n* Qubits

The Pauli group on 1 qubit is the multiplicative matrix group

$$G_1 = \{\pm I, \pm iI, \pm X, \pm iX, \pm Y, \pm iY, \pm Z, \pm iZ\}.$$

The Pauli matrices X, Y, and Z anti-commute with each other.

$$XY = -YX$$
 $XZ = -ZX$ $YZ = -ZY$

More generally, the Pauli group G_n on n qubits is the group of all n-fold tensor products of Pauli matrices (with factors ± 1 and $\pm i$).

Example:

$$Z \otimes Z \otimes I = Z_1 Z_2 \in G_3$$

 $I \otimes Z \otimes Z = Z_2 Z_3 \in G_3$

Quantum Information

Quantum Error Correcting Codes

The Toric Code

References

Stabilizer Codes

For any subgroup $S \subseteq G_n$, define V_S to be the vector space of n qubit states which are **stabilized** (left fixed) by the elements in S.

$$V_{S} = \{ |\psi\rangle : U |\psi\rangle = |\psi\rangle \text{ for all } U \in S \}$$

Example: Three Qubit Bit-Flip Code

$$S = \langle Z_1 Z_2, Z_2 Z_3 \rangle = \{I, Z_1 Z_2, Z_2 Z_3, Z_1 Z_3\} \subseteq G_3$$

 $V_{\mathcal{S}} = \langle |000\rangle, |111\rangle\rangle = \{|\psi\rangle = \alpha |000\rangle + \beta |111\rangle : |\alpha|^2 + |\beta|^2 = 1\}$

- $V_S = \langle |000\rangle, |111\rangle \rangle$ is a stabilizer code.
- $S = \langle Z_1 Z_2, Z_2 Z_3 \rangle$ is the stabilizer subgroup.
- Z_1Z_2 and Z_2Z_3 are the stabilizer generators.

 V_S is nontrivial if and only if S is commutative and $-I \notin S$.

Quantum Information

Quantum Error Correcting Codes

The Toric Code

References

The Steane Code

The **Steane Code** [8] is an example of a 7-qubit stabilizer code. It can correct arbitrary errors on a single qubit.

g_1	=	$X_4X_5X_6X_7$			0	0	0	1	1	1	1
g2	=	$X_{2}X_{3}X_{6}X_{7}$	H_X	=	0	1	1	0	0	1	1
g2	=	$X_1 X_3 X_5 X_7$			[1	0	1	0	1	0	1
σ,	_	$7_{4}7_{5}7_{6}7_{7}$			Го	0	0	1	1	1	1]
64 ~		$z_4 z_5 z_0 z_7$	Hz	=	0	1	1	0	0	1	1
g 5	=	Z ₂ Z ₃ Z ₆ Z ₇	_		1	0	1	0	1	0	1
g 6	=	$Z_1 Z_3 Z_5 Z_7$			-						_

It is defined via the stabilizer generators $\langle g_1, g_2, g_3, g_4, g_5, g_6 \rangle$. It is also an example of a CSS code using the above two matrices.

Quantum Error Correcting Codes

References

Calderbank-Shor-Steane (CSS) Codes

A **CSS** code [1, 8] $CSS(C_X, C_Z)$ is a quantum code defined by two classical linear codes $C_X = \ker(H_X)$ and $C_Z = \ker(H_Z)$.

- $CSS(C_X, C_Z)$ is a special case of stabilizer code.
- The rows of H_X define X-Pauli stabilizer generators: $X_i X_j \cdots$.
- The rows of H_Z define Z-Pauli stabilizer generators: $Z_r Z_s \cdots$.

To be a stabilizer code, the X- and Z-stabilizers must commute. For $CSS(C_X, C_Z)$, this requirement is equivalent to the conditions:

• the rows of H_X and rows of H_Z are orthogonal;

•
$$H_X H_Z^T = H_Z H_X^T = 0;$$

• the dual codes satisfy $C_X^{\perp} \subseteq C_Z$ and $C_Z^{\perp} \subseteq C_X$.

Note: H_X detects Z-Pauli errors; H_Z detects X-Pauli errors.

Quantum Error Correcting Codes

The Toric Code

References

Syndrome Analysis for CSS Codes

Similar to how X- and Z-stabilizers are represented using vectors, we can give an analogous description to an error operator $E \in G_n$.

$$E = X_1 Z_1 X_2 Z_4 \in G_4 \qquad \Leftrightarrow \qquad \begin{array}{cccc} e_X &= & \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T \\ e_Z &= & \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^T \end{array}$$

Syndrome analysis for the quantum code $CSS(C_X, C_Z)$ can be performed using the classical parity check matrices H_X and H_Z .

- Syndrome for X-type Pauli errors: $H_Z e_X = s_X$
- Syndrome for Z-type Pauli errors: $H_X e_Z = s_Z$

Predicting the quantum error operator E then reduces to the classical problem of predicting e_X and e_Z given s_X and s_Z .

Quantum Information

Quantum Error Correcting Codes

The Toric Code

References

The Shor Code [7]

The **Shor Code** is another example of a CSS code, with 9 qubits. It is a combination of the 3-qubit Bit-Flip and Phase-Flip codes.

g_1	=	Z_1Z_2			$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1	0	0	0	0	0	0	0
g2	=	Z_2Z_3	ц		0	0	0	1	1	0	0	0	0
g3	=	Z_4Z_5	ΠZ	_	0	0	0	0	1	1	0	0	0
g ₄	=	$Z_5 Z_6$				0	0	0	0	0	0	1	1
g ₅	=	$Z_7 Z_8$											
g 6	=	Z_8Z_9											
g ₇	=	$X_1 X_2 X_3 X_4 X_5 X_6$	Hx	=	[1	1	1	1	1	1	0	0	0
g 8	=	$X_4 X_5 X_6 X_7 X_8 X_9$	~		[0	0	0	T	1	1	1	1	Ţ

Like the Steane code, it can correct any errors on a single qubit.

Quantum Information

Quantum Error Correcting Codes

The Toric Code

References

The 5-Qubit Code

The 5-qubit code is an example of a stabilizer code which is *not* CSS since the stabilizers cannot be separated into X- and Z-types.

$$g_{1} = X_{1}Z_{2}Z_{3}X_{4}$$

$$g_{2} = X_{2}Z_{3}Z_{4}X_{5}$$

$$g_{3} = X_{1}X_{3}Z_{4}Z_{5}$$

$$g_{4} = Z_{1}X_{2}X_{4}Z_{5}$$

This is the smallest code which is capable of correcting arbitrary errors on a single qubit.

Quantum Information

Quantum Error Correcting Codes

The Toric Code

References

Table of Contents

Classical Codes

Quantum Information

Quantum Error Correcting Codes

The Toric Code

Quantum Information

Quantum Error Correcting Codes

The Toric Code

References

Lattice Description of the Torus

A torus $T = S_1 \times S_1$ can be visualized using a square lattice, where the top/bottom and right/left edges are identified with each other.

Kitaev [5] showed how it is possible to build a quantum code called a **toric code** using a *cell decomposition* of a torus.

Building a Quantum Code on the Torus Lattice

Using the $m \times m$ torus lattice, we may construct a stabilizer code with $n = 2m^2$ qubits, where each qubit is identified with an **edge**.

$\left \begin{array}{c} q_{11} \\ q_{6} \end{array} \right $	q ₁₄ q ₇	q_{17} q_8
$\left[egin{array}{c} q_{10} & & \\ q_3 & & \end{array} ight]$	q ₁₃ q ₄	$\left[egin{array}{c} q_{16} \\ q_5 \end{array} ight]$
q_9 q_0	q_{12} q_1	q ₁₅ q ₂

Quantum Error Correcting Codes

The Toric Code

References

Stabilizers on the Torus Lattice

X-stabilizer generators are defined by **nodes**. Z-stabilizer generators are defined by **plaquettes**.

X- and Z-type stabilizer generators overlap on zero or two qubits, and hence will commute (a requirement for stabilizer codes).

Quantum Information

Quantum Error Correcting Codes

The Toric Code

References

Check Matrices for the 3×3 Toric Code

	1	0	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	0]	
	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	
	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	
	0	0	0	1	0	0	1	0	0	0	0	0	1	0	1	0	0	0	
$H_X =$	0	0	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	0	
	0	0	0	0	0	1	0	0	1	0	0	0	0	1	1	0	0	0	
	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1	
	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	
	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1	
	[1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	l
	0	1	1	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	
	1	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	
	0	0	0	1	1	0	0	0	0	1	0	0	1	0	0	0	0	0	
$H_Z =$	0	0	0	0	1	1	0	0	0	0	1	0	0	1	0	0	0	0	
	0	0	0	1	0	1	0	0	0	0	0	1	0	0	1	0	0	0	
	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	1	0	0	
	0	0	0	0	0	0	0	1	1	0	0	0	0	1	0	0	1	0	
	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	0	1	

Notice that H_X and H_Z for the 3 × 3 toric code contain the block structure of several copies of the 3-bit repetition code!

Quantum Information

Quantum Error Correcting Codes

The Toric Code

Errors and Syndromes on the Torus Lattice

A Z-error on some combination of qubit edges is detected by the X-check nodes adjacent to an *odd number* of erroneous qubits.

The H_X -syndrome for this Z-error is visualized by these nodes.

A **logical error** has undetectable syndrome; these correspond to *closed loops* on the lattice and may be trivial or nontrivial.

- A contractible loop is equivalent to a product of stabilizers.
- A loop that *wraps around* the lattice is a non-trivial error.

Generalizations of the Toric Code

More generally, any cell decomposition for any surface can be used to construct a quantum code in this way; these are **surface codes**.

- The topology of a surface code can be exploited for decoding.
- The lattice structure is useful for physical implementation.

The toric code is an example of a **hypergraph product** (HGP) code constructed using two repetition codes.

- A HGP code is constructed from any two classical codes $C_1 = \ker(H_1), C_2 = \ker(H_2)$ of sizes $H_i = [r_i \times n_i]$.
- $H_X = [H_1 \otimes I_{n_2} | I_{r_1} \otimes H_2^T]$ and $H_Z = [I_{n_1} \otimes H_2 | H_1^T \otimes I_{r_2}].$

Quantum Error Correcting Codes

The Toric Coo

References

References

- A Robert Calderbank and Peter W Shor. Good quantum error-correcting codes exist. Physical Review A, 54(2):1098, 1996.
- [2] Simon J Devitt, William J Munro, and Kae Nemoto. Quantum error correction for beginners. Reports on Progress in Physics, 76(7):076001, 2013.
- [3] Daniel Gottesman. <u>Stabilizer codes and quantum error correction</u>. California Institute of Technology, 1997.
- [4] DC Hankerson, Gary Hoffman, Douglas A Leonard, Charles C Lindner, Kevin T Phelps, Chris A Rodger, and James R Wall. <u>Coding theory and cryptography: the</u> essentials. CRC Press, 2000.
- [5] A Yu Kitaev. Fault-tolerant quantum computation by anyons. <u>Annals of Physics</u>, 303(1):2–30, 2003.
- [6] Michael A Nielsen and Isaac Chuang. <u>Quantum computation and quantum</u> information. American Association of Physics Teachers, 2002.
- [7] Peter W Shor. Scheme for reducing decoherence in quantum computer memory. Physical review A, 52(4):R2493, 1995.
- [8] Andrew Steane. Multiple-particle interference and quantum error correction. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 452(1954):2551–2577, 1996.
- [9] Andrew M Steane. A tutorial on quantum error correction. <u>Quantum Computers</u>, Algorithms and Chaos, pages 1–32, 2006.