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Coding Theory

Coding theory [4] is concerned with the study of how to encode
information for transmission through a communication channel.

Source Encoder Channel Decoder Target

Noise

Physical communication channels are always subject to the
presence of noise which can disrupt the information.
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Classical Bits and Bit-flip Errors

In a classical setting, information is represented using strings of
bits, each of which has value 0 or 1.

010011000111

A noisy channel can lead to bit-flip errors during transmission,
where the value of a bit changes from 0 to 1 or from 1 to 0.

010111000101
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Binary Symmetric Channel

A binary symmetric channel is a noisy channel in which the value
of each transmitted bit can be flipped with probability 0 ≤ p ≤ 1.

0

1

0

1

1− p

p

1− p

p

By encoding the information using error correcting codes, many
mistakes in a transmitted message can be identified and fixed.
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Linear Codes
A (binary) linear code C is a vector subspace of Fn

2.

1. The vectors in C are referred to as code words.

2. C has length n, the number of bits in a code word.

3. C has dimension k as a subspace of Fn
2.

Example: A code of length 3 and dimension 2 as a subspace of F3
2

F3
2 =


00
0

 ,
10
0

 ,
01
0

 ,
00
1

 ,
11
0

 ,
01
1

 ,
10
1

 ,
11
1



C = ⟨

10
0

 ,
01
0

⟩ =

00
0

 ,
10
0

 ,
01
0

 ,
11
0

 = ker(
[
0 0 1

]
)
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Parity Check Matrices

Equivalently, a linear code C may be defined as the kernel of a
parity check matrix H. In other words, C = ker(H).

v ∈ C if and only if Hv = 0 (modulo 2)

Example: 3-bit Repetition Code

H =

1 1 0
0 1 1
1 0 1

 C = ker(H) =


00
0

 ,
11
1


For example, v =

11
0

 /∈ C since Hv =

01
1

 ̸= 0.

(All bits in a vector of the repetition code have the same value.)
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Error Detection

The repetition code is an example of an error detecting code.

message sent
x

⇒ noisy channel
x + e

⇒ message received
x ′11

1

 11
1

+

00
1

 11
0


Noise can be represented by adding an error vector e to the
original message x . If Hx ′ ̸= 0, then we know there is an error.

Hx ′ = H(x + e) = Hx + He = He

Note: If He = 0, then e is an undetectable error!
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Error Correction and Syndrome Analysis

Hx ′ = Hx + He = He = s

The value He = s is known as the syndrome of an error e.
The goal of syndrome analysis is to compute e given s.
This allows the original message to be recovered by canceling out e.

x ′ + e = x + e + e = x

The linear algebra problem He = s can be solved, for example,
using Gaussian elimination.

In general, there exists more than one error satisfying He = s, but
we assume that |e| is small (“maximum likelihood decoding”).
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Minimum Distance

The Hamming weight of a binary vector is the number of nonzero
entries.

w(
[
1 1 0

]T
) = 2

The distance between two vectors is the weight of their sum.

d(
[
1 1 0

]T
,
[
0 1 1

]T
) = w(

[
1 0 1

]T
) = 2

The minimum distance of a code C is defined to be the smallest
possible distance between any two code words in C .

min dist(C ) = min{d(v1, v2) : v1, v2 ∈ C}

A binary code with length n, dimension k , and minimum distance
d is denoted as an [n, k , d ]2 code.

Example: The 3-bit repetition code is a [3, 1, 3]2 code.
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Tanner Graphs

The Tanner graph of a linear code C = ker(H) is the bipartite
graph G defined using H as an incidence matrix.

G =

b1

b2

b3

c1

c2

c3

H =

1 1 0
0 1 1
1 0 1



• The columns of H correspond to bit nodes in G .

• The rows of H correspond to check nodes in G .

• There exists an edge between bit i and check j in G if and
only if the entry in cell i , j of H is nonzero.
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Qubits

Whereas classical information is represented using bits, quantum
information is represented using qubits (“quantum bits”).

A classical bit has only two possible states: 0 or 1.
A qubit |ψ⟩ can be represented as a superposition of states.

|ψ⟩ = α|0⟩+ β|1⟩ α, β ∈ C where |α|2 + |β|2 = 1

A qubit |ψ⟩ can be thought of as a unit vector in a 2-dimensional
complex vector space with a basis formed by the states |0⟩ and |1⟩.

Example: |+⟩ and |−⟩ states

|+⟩ = |0⟩+ |1⟩√
2

|−⟩ = |0⟩ − |1⟩√
2
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Quantum Gates

Using the two computational basis states |0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
,

a quantum state |ψ⟩ can be represented as a linear combination.

|ψ⟩ = α|0⟩+ β|1⟩ = α

[
1
0

]
+ β

[
0
1

]
=

[
α
β

]

Similar to logic gates for classical bits, quantum gates can be used
to describe how to move one quantum state to another. Quantum
gates on a single qubit can be represented using 2× 2 matrices.

Example: Quantum NOT Gate: X =

[
0 1
1 0

]

X |ψ⟩ =

[
0 1
1 0

] [
α
β

]
=

[
β
α

]
= β|0⟩+ α|1⟩



Classical Codes Quantum Information Quantum Error Correcting Codes The Toric Code References

Weird Difficulties with Quantum Information

Qubits behave very differently from classical bits.

1. No cloning theorem
Quantum states cannot be duplicated.

2. Continuous errors
A continuum of errors may occur on a single qubit.

3. Measurements destroy quantum information
Measuring a qubit in state |ψ⟩ = α|0⟩+ β|1⟩ collapses the
state to either 0 or 1 (with probabilities |α|2 and |β|2).

Quantum error correction must work around these constraints.
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Pauli Operators

A quantum gate U acting on a state |ψ⟩ = α|0⟩+ β|1⟩ must be
unitary (U†U = I ) to preserve the condition that |α|2 + |β|2 = 1.

Four important quantum gates are known as the Pauli Operators.

I =

[
1 0
0 1

]
X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
Any transformation of a quantum state (including noise) can be
described using only linear combinations of Pauli operators .

Example: Hadamard Gate H

H ≡ 1√
2

[
1 1
1 −1

]
=

1√
2
X +

1√
2
Z
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Quantum Bit-Flips and Phase-Flips
The I Pauli operator is identity.

I |ψ⟩ = |ψ⟩

The X Pauli operator describes a quantum bit-flip.

X |0⟩ =

[
0 1
1 0

] [
1
0

]
=

[
0
1

]
= |1⟩

The Z Pauli operator describes a quantum phase-flip.

Z |+⟩ =
Z (|0⟩+ |1⟩)√

2
=

|0⟩ − |1⟩√
2

= |−⟩

The Y Pauli operator combines both a bit-flip and a phase-flip.

Y =

[
0 −i
i 0

]
= i

[
0 1
1 0

] [
1 0
0 −1

]
= iXZ
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Discretization of Quantum Errors

The effect of noise in a quantum channel can be interpreted as a
transformation of a quantum state described by an operator E .

|ψ⟩ noise−→ E |ψ⟩

E can be expanded as a linear combination of the Pauli operators.

E = e0I + e1X + e2Z + e3XZ

In the single qubit case, the quantum state E |ψ⟩ is a superposition
of four possible terms. These can be exploited for error correction.

E |ψ⟩ = e0|ψ⟩+ e1X |ψ⟩+ e2Z |ψ⟩+ e3XZ |ψ⟩

Measuring the syndrome of E |ψ⟩ collapses the state onto one of
these four possibilities and tells us which correction to apply!
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Multiple Qubits

A state in a two qubit system, for example, can be expressed as:

|ψ⟩ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩.

This notation is a shorthand for tensor products of single qubit
states. More generally, a multiple qubit state has the form:

|0000⟩ = |0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩.

Tensor products of Pauli operators can be applied linearly.

X1X3|0000⟩ = (X ⊗ I ⊗ X ⊗ I )(|0⟩ ⊗ |0⟩ ⊗ |0⟩ ⊗ |0⟩)
= X |0⟩ ⊗ I |0⟩ ⊗ X |0⟩ ⊗ I |0⟩
= |1⟩ ⊗ |0⟩ ⊗ |1⟩ ⊗ |0⟩
= |1010⟩
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The Three Qubit Bit-Flip Code
Consider a 3-qubit quantum code with basis states {|000⟩, |111⟩},
with states superpositions of the form |ψ⟩ = α|000⟩+ β|111⟩.
A bit-flip (X Pauli error) occurring on the first qubit has the form:

X1|ψ⟩ = αX1|000⟩+ βX1|111⟩ = α|100⟩+ β|011⟩.

A bit-flip on at most one qubit is detected using operators ZiZj .

ZiZj |ψ⟩ =

{
|ψ⟩ if qubit i and j have the same value

−|ψ⟩ otherwise

Note that ZiZj leaves states |ψ⟩ = α|000⟩+ β|111⟩ fixed.
The syndrome measurement of an error E |ψ⟩ is computed as:

⟨ψ|E †ZiZjE |ψ⟩ =

{
⟨ψ|E †E |ψ⟩ = 1 if ZiZjE |ψ⟩ = E |ψ⟩
−⟨ψ|E †E |ψ⟩ = −1 if ZiZjE |ψ⟩ = −E |ψ⟩

.
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Syndrome Analysis of the Three Qubit Bit-Flip Code

The effect of noise on a state |ψ⟩ is modeled by an operator E .

|ψ⟩ = α|000⟩+ β|111⟩ noise−→ E |ψ⟩

If E ∈ {I ,X1,X2,X3}, this can be inferred by analyzing the
syndrome measurements of the operators Z1Z2 and Z2Z3.

E ⟨ψ|E †Z1Z2E |ψ⟩ ⟨ψ|E †Z2Z3E |ψ⟩
I +1 +1
X1 −1 +1
X2 −1 −1
X3 +1 −1

Syndrome measurement does not reveal information about α and
β, only about E . A correction to E |ψ⟩ is applied based on this.
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Pauli Group on n Qubits

The Pauli group on 1 qubit is the multiplicative matrix group

G1 = {±I ,±iI ,±X ,±iX ,±Y ,±iY ,±Z ,±iZ} .

The Pauli matrices X , Y , and Z anti-commute with each other.

XY = −YX XZ = −ZX YZ = −ZY

More generally, the Pauli group Gn on n qubits is the group of all
n-fold tensor products of Pauli matrices (with factors ±1 and ±i).

Example:
Z ⊗ Z ⊗ I = Z1Z2 ∈ G3

I ⊗ Z ⊗ Z = Z2Z3 ∈ G3
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Stabilizer Codes

For any subgroup S ⊆ Gn, define VS to be the vector space of n
qubit states which are stabilized (left fixed) by the elements in S .

VS = {|ψ⟩ : U|ψ⟩ = |ψ⟩ for all U ∈ S}

Example: Three Qubit Bit-Flip Code

S = ⟨Z1Z2,Z2Z3⟩ = {I ,Z1Z2,Z2Z3,Z1Z3} ⊆ G3

VS = ⟨|000⟩, |111⟩⟩ = {|ψ⟩ = α|000⟩+β|111⟩ : |α|2+|β|2 = 1}

• VS = ⟨|000⟩, |111⟩⟩ is a stabilizer code.

• S = ⟨Z1Z2,Z2Z3⟩ is the stabilizer subgroup.

• Z1Z2 and Z2Z3 are the stabilizer generators.

VS is nontrivial if and only if S is commutative and −I /∈ S .
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The Steane Code

The Steane Code [8] is an example of a 7-qubit stabilizer code.
It can correct arbitrary errors on a single qubit.

g1 = X4X5X6X7

g2 = X2X3X6X7

g3 = X1X3X5X7

g4 = Z4Z5Z6Z7

g5 = Z2Z3Z6Z7

g6 = Z1Z3Z5Z7

HX =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



HZ =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1



It is defined via the stabilizer generators ⟨g1, g2, g3, g4, g5, g6⟩.
It is also an example of a CSS code using the above two matrices.
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Calderbank-Shor-Steane (CSS) Codes

A CSS code [1, 8] CSS(CX ,CZ ) is a quantum code defined by two
classical linear codes CX = ker(HX ) and CZ = ker(HZ ).

• CSS(CX ,CZ ) is a special case of stabilizer code.

• The rows of HX define X -Pauli stabilizer generators: XiXj · · · .
• The rows of HZ define Z -Pauli stabilizer generators: ZrZs · · · .

To be a stabilizer code, the X - and Z -stabilizers must commute.
For CSS(CX ,CZ ), this requirement is equivalent to the conditions:

• the rows of HX and rows of HZ are orthogonal;

• HXH
T
Z = HZH

T
X = 0;

• the dual codes satisfy C⊥
X ⊆ CZ and C⊥

Z ⊆ CX .

Note: HX detects Z -Pauli errors; HZ detects X -Pauli errors.
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Syndrome Analysis for CSS Codes

Similar to how X - and Z -stabilizers are represented using vectors,
we can give an analogous description to an error operator E ∈ Gn.

E = X1Z1X2Z4 ∈ G4 ⇔ eX =
[
1 1 0 0

]T
eZ =

[
1 0 0 1

]T
Syndrome analysis for the quantum code CSS(CX ,CZ ) can be
performed using the classical parity check matrices HX and HZ .

• Syndrome for X -type Pauli errors: HZeX = sX
• Syndrome for Z -type Pauli errors: HX eZ = sZ

Predicting the quantum error operator E then reduces to the
classical problem of predicting eX and eZ given sX and sZ .
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The Shor Code [7]

The Shor Code is another example of a CSS code, with 9 qubits.
It is a combination of the 3-qubit Bit-Flip and Phase-Flip codes.

g1 = Z1Z2

g2 = Z2Z3

g3 = Z4Z5

g4 = Z5Z6

g5 = Z7Z8

g6 = Z8Z9

g7 = X1X2X3X4X5X6

g8 = X4X5X6X7X8X9

HZ =


1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1



HX =

[
1 1 1 1 1 1 0 0 0
0 0 0 1 1 1 1 1 1

]

Like the Steane code, it can correct any errors on a single qubit.
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The 5-Qubit Code

The 5-qubit code is an example of a stabilizer code which is not
CSS since the stabilizers cannot be separated into X - and Z -types.

g1 = X1Z2Z3X4

g2 = X2Z3Z4X5

g3 = X1X3Z4Z5

g4 = Z1X2X4Z5

This is the smallest code which is capable of correcting arbitrary
errors on a single qubit.
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Lattice Description of the Torus

A torus T = S1 × S1 can be visualized using a square lattice, where
the top/bottom and right/left edges are identified with each other.

Kitaev [5] showed how it is possible to build a quantum code called
a toric code using a cell decomposition of a torus.
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Building a Quantum Code on the Torus Lattice

Using the m ×m torus lattice, we may construct a stabilizer code
with n = 2m2 qubits, where each qubit is identified with an edge.

q0 q1 q2

q3 q4 q5

q6 q7 q8

q9

q10

q11

q12

q13

q14

q15

q16

q17
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Stabilizers on the Torus Lattice

X -stabilizer generators are defined by nodes.
Z -stabilizer generators are defined by plaquettes.

g
q3 q4

q12

q13

g = X3X4X12X13

q4

q7

q13 q16g ′

g ′ = Z4Z7Z13Z16

X - and Z -type stabilizer generators overlap on zero or two qubits,
and hence will commute (a requirement for stabilizer codes).
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Check Matrices for the 3× 3 Toric Code

Notice that HX and HZ for the 3× 3 toric code contain the block
structure of several copies of the 3-bit repetition code!
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Errors and Syndromes on the Torus Lattice
A Z -error on some combination of qubit edges is detected by the
X -check nodes adjacent to an odd number of erroneous qubits.

The HX -syndrome for this Z -error is visualized by these nodes.

Z

Z

Z

Z

Z Z Z

Z Z

Z Z

Z Z

A logical error has undetectable syndrome; these correspond to
closed loops on the lattice and may be trivial or nontrivial.

• A contractible loop is equivalent to a product of stabilizers.

• A loop that wraps around the lattice is a non-trivial error.
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Generalizations of the Toric Code

More generally, any cell decomposition for any surface can be used
to construct a quantum code in this way; these are surface codes.

• The topology of a surface code can be exploited for decoding.

• The lattice structure is useful for physical implementation.

The toric code is an example of a hypergraph product (HGP)
code constructed using two repetition codes.

• A HGP code is constructed from any two classical codes
C1 = ker(H1), C2 = ker(H2) of sizes Hi = [ri × ni ].

• HX = [H1 ⊗ In2 |Ir1 ⊗ HT
2 ] and HZ = [In1 ⊗ H2|HT

1 ⊗ Ir2 ].
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