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Main Result
We consider the decoding problem for HGP codes, one of the most popular families of

quantum LDPC codes. We propose a decoder which closely approximates the maximum
likelihood decoder, but with computational complexity reduced by an order of magnitude.

Classical Codes and Tanner Graphs
A classical binary linear code C is a vector space over Z2. A code of length n is defined to be the kernel of
an r × n parity check matrix H . Vectors x ∈ C ⊆ Zn2 are known as codewords, and C has dimension k as
a subspace of Zn2 . A code C = ker(H) may be visualized by its Tanner graph T (H).
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Figure 1: The 3-bit repetition code, its parity check matrix, and its Tanner graph.

• T (H) is a bipartite graph with vertex set A ∪B.

–A = {a1, · · · an} is the set of bits in C (one vertex for each column in H).
–B = {b1, · · · , br} is the set of checks in C (one vertex for each row in H).

• There exists an edge between bi and aj if and only if Hi,j ̸= 0.

•C = ker(H) is a low density parity check (LDPC) code if H is a sparse matrix.

Classical Error Correction
1. An initial codeword x ∈ C = ker(H) ⊆ Zn2 is sent.

2. A corrupted codeword y = x + e ∈ Zn2 is received.

3. A syndrome measurement s = Hy = He ∈ Zr2 is made.

4. The decoder predicts an error ê satisfying s = Hê.

5. Error correction y + ê is performed.

6. The original codeword is recovered if y + ê = x.
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Figure 2: Example of a message corrupted by a noisy
channel, and the resulting syndrome measurement.

The Erasure Channel and the Peeling Decoder

• An erasure refers to the loss of a known subset of bits E .

– E induces a subgraph of the Tanner graph T (H).

– Figure: H =

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 with E = {a3, a4, a5}.

• Erasure correction can be achieved using error correction.

– Erased bits in E are assigned random values.

• The Peeling Decoder does this efficiently for LDPC codes.
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Figure 3: Erasure-induced sub-
graph of the Tanner graph T (H).

1. Given erasure pattern E , a dangling (degree 1) check in the erasure induced subgraph of T (H) is selected.

2. The adjacent erased bit is corrected and then removed from E , shrinking the erasure and the subgraph.

3. The algorithm terminates when E = ∅, or fails when E is a stopping set (contains no dangling checks).
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Figure 4: Example of a sequence of stages in the peeling decoder; each “peel” reduces the size of the erasure E until empty.

Families of Quantum Codes
A quantum code of length N and dimension K is a subspace of a Hilbert space; vectors are N -qubit states
|ψ⟩ ∈ CN . Errors on a state |ψ⟩ are described discretely byN -qubit Pauli operators in PN = {I,X, Z, Y }⊗N .

• Stabilizer codes are defined as the space of states left fixed by some subgroup of the Pauli-group PN .

• CSS codes are a subclass of stabilizer codes defined by commuting N -qubit X- and Z-Pauli operators.

–X- and Z-Pauli stabilizer generators define the rows of matrices HX and HZ (where HXHT
Z = 0).

– CSS Z and X error correction is modeled using the classical codes CX = ker(HX) and CZ = ker(HZ).

• Surface codes are a subclass of CSS codes defined from a cellulation of a surface.
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Example of the 3× 3 Toric Code
• Edges define qubits.

• Vertices define X-stabilizer generators.

–Xb1a2 = Xa1a2Xa2a2Xb1b1Xb1b2
– Detect Z-errors on adjacent qubits.

• Plaquettes define Z-stabilizer generators.

–Za2b2 = Za2a2Za2a3Zb1b2Zb2b2
– Detect X-errors on adjacent qubits.

•X- and Z-stabilizers overlap on 0 or 2 qubits.

– Commutivity: Xb1a2Za2b2 = Za2b2Xb1a2

Figure 5: Standard lattice visualization of the 3× 3 toric code, with labels matching the HGP Tanner graph of Figure 6.
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Figure 6: Geometric structure of the Tanner graph of a HGP of two 3-bit repetition codes (equivalent to the 3× 3 toric code).

Theorem (Tillich-Zémor):

The hypergraph product (HGP) code of two classical codes C1 = ker(H1) and C2 = ker(H2) is
the quantum code C = CSS(CX , CZ), where CX = ker(HX) and CZ = ker(HZ) have parity check
matrices HX and HZ defined from H1 and H2 by the formulas shown in Figure 6.

•C has length N = n1n2 + r1r2, where H1 = [r1 × n1] and H2 = [r2 × n2] are the matrix sizes.

•C has dimension K = N − rank(HX)− rank(HZ).

•C has minimum distance min(d1, d2), where d1 and d2 are the minimum distances of C1 and C2.

Generalized Peeling Decoder for HGP Codes
By mapping Pauli errors Xi, Zi ∈ PN onto binary strings ei ∈ ZN2 , the erasure decoding problem for a CSS
code can be modeled as a classical erasure problem usingHZ orHX , and the peeling decoder directly applied.

• We try to use the classical peeling decoder with HGP codes, but observe that it does not perform well.

• This poor performance results from the presence of stopping sets unique to HGP codes.

• We design different versions of a generalized peeling decoder to overcome these stopping sets.

• Numerical simulations show that we can achieve a performance close to the maximum likelihood decoder.
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Figure 7: Two types of HGP stopping sets for the peeling decoder: stabilizer (left) and classical (right)

Stabilizer Stopping Sets and the Pruned Peeling Decoder
1. Given erasure pattern E , apply the peeling decoder algorithm until E contains no remaining dangling checks.

2. If E contains the qubit-support S of an X-type stabilizer, then S ⊆ E is a stabilizer stopping set of T (HZ).

3. Remove a qubit in S from E and continue peeling (errors are corrected up to multiplication by a stabilizer).

Classical Stopping Sets and the Vertical-Horizontal (VH) Decoder
1. Apply the pruned peeling decoder algorithm until E contains no dangling checks and no erased stabilizers.

2. E contains a classical stopping set if it contains a stopping set for T (H1) (vertical) or T (H2) (horizontal).

3. Apply the Gaussian (ML) decoder on classical stopping sets in sequence and continue peeling.

4. The VH decoder will terminate provided clusters of classical stopping sets do not form a closed loop.

Numerical Simulations and Computational Complexity

Figure 8: Comparison of performance for Pruned Peeling, VH, and ML decoders for three randomly generated HGP codes.

VH Decoder Performance
Simulations show that pruned peeling (with M stabilizer generators) combined with the VH decoder performs
almost as well as the Gaussian (ML) decoder applied to random LDPC HGP codes at low erasure rates.

Complexity of the VH Decoder
For a HGP code of length N , the classical codes used in the construction have length on the order of

√
N .

• The VH decoder is dominated by the cubic complexity Gaussian decoder on these classical codes.

• Complexity grows as O(N
3
2) per classical code and O(N2) across all classical codes.

• Probabilistic implementation of the Gaussian decoder in quadratic complexity reduces this to O(N1.5).


