**Fast Erasure Decoder for a Class of Quantum LDPC Codes** Nicholas Connolly\*<sup>1</sup>, Vivien Londe<sup>2</sup>, Anthony Leverrier<sup>1</sup>, and Nicolas Delfosse<sup>3</sup> <sup>1</sup>Inria Paris, <sup>2</sup>Microsoft France, <sup>3</sup>Microsoft Quantum https://arxiv.org/abs/2208.01002

# Innín\_

## Main Result

We consider the decoding problem for HGP codes, one of the most popular families of quantum LDPC codes. We propose a decoder which closely approximates the maximum likelihood decoder, but with computational complexity reduced by an order of magnitude.

## **Classical Codes and Tanner Graphs**

A classical binary linear code C is a vector space over  $\mathbb{Z}_2$ . A code of length n is defined to be the kernel of an  $r \times n$  parity check matrix H. Vectors  $x \in C \subseteq \mathbb{Z}_2^n$  are known as codewords, and C has dimension k as a subspace of  $\mathbb{Z}_2^n$ . A code  $C = \ker(H)$  may be visualized by its **Tanner graph** T(H).



#### **Hypergraph Product Codes**



**Figure 6:** Geometric structure of the Tanner graph of a HGP of two 3-bit repetition codes (equivalent to the  $3 \times 3$  toric code).



Figure 1: The 3-bit repetition code, its parity check matrix, and its Tanner graph.

- T(H) is a bipartite graph with vertex set  $A \cup B$ .
- $-A = \{a_1, \dots, a_n\}$  is the set of **bits** in C (one vertex for each column in H).
- $-B = \{b_1, \dots, b_r\}$  is the set of **checks** in C (one vertex for each row in H).
- There exists an edge between  $b_i$  and  $a_j$  if and only if  $H_{i,j} \neq 0$ .
- $C = \ker(H)$  is a low density parity check (LDPC) code if H is a sparse matrix.

## **Classical Error Correction**

- 1. An initial codeword  $x \in C = \ker(H) \subseteq \mathbb{Z}_2^n$  is sent. 2. A corrupted codeword  $y = x + e \in \mathbb{Z}_2^n$  is received. 3. A syndrome measurement  $s = Hy = He \in \mathbb{Z}_2^r$  is made. 4. The decoder predicts an error  $\hat{e}$  satisfying  $s = H\hat{e}$ . 5. Error correction  $y + \hat{e}$  is performed.
- syndrome noise message  $egin{array}{c} 0 \\ 1 \\ 1 \end{array}$  $\Rightarrow$ =s = Hyx + e = yr
- 6. The original codeword is recovered if  $y + \hat{e} = x$ .



## **The Erasure Channel and the Peeling Decoder**

• An erasure refers to the loss of a *known* subset of bits  $\mathcal{E}$ .  $-\mathcal{E}$  induces a subgraph of the Tanner graph T(H).  $\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$ -Figure:  $H = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$  with  $\mathcal{E} = \{a_3, a_4, a_5\}$ .  $1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$ 



### **Theorem (Tillich-Zémor)**:

The hypergraph product (HGP) code of two classical codes  $C_1 = \ker(H_1)$  and  $C_2 = \ker(H_2)$  is the quantum code  $C = \text{CSS}(C_X, C_Z)$ , where  $C_X = \ker(H_X)$  and  $C_Z = \ker(H_Z)$  have parity check matrices  $H_X$  and  $H_Z$  defined from  $H_1$  and  $H_2$  by the formulas shown in Figure 6.

- C has length  $N = n_1 n_2 + r_1 r_2$ , where  $H_1 = [r_1 \times n_1]$  and  $H_2 = [r_2 \times n_2]$  are the matrix sizes.
- C has dimension  $K = N \operatorname{rank}(H_X) \operatorname{rank}(H_Z)$ .
- C has minimum distance  $min(d_1, d_2)$ , where  $d_1$  and  $d_2$  are the minimum distances of  $C_1$  and  $C_2$ .

# **Generalized Peeling Decoder for HGP Codes**

By mapping Pauli errors  $X_i, Z_i \in P_N$  onto binary strings  $e_i \in \mathbb{Z}_2^N$ , the erasure decoding problem for a CSS code can be modeled as a classical erasure problem using  $H_Z$  or  $H_X$ , and the peeling decoder directly applied.

- We try to use the classical peeling decoder with HGP codes, but observe that it does not perform well.
- This poor performance results from the presence of stopping sets unique to HGP codes.
- We design different versions of a generalized peeling decoder to overcome these stopping sets.
- Numerical simulations show that we can achieve a performance close to the maximum likelihood decoder.





- Erasure correction can be achieved using error correction.
- Erased bits in  $\mathcal{E}$  are assigned random values.
- The **Peeling Decoder** does this efficiently for LDPC codes.

Figure 3: Erasure-induced subgraph of the Tanner graph T(H).

1. Given erasure pattern  $\mathcal{E}$ , a **dangling** (degree 1) check in the erasure induced subgraph of T(H) is selected. 2. The adjacent erased bit is corrected and then removed from  $\mathcal{E}$ , shrinking the erasure and the subgraph. 3. The algorithm terminates when  $\mathcal{E} = \emptyset$ , or fails when  $\mathcal{E}$  is a **stopping set** (contains no dangling checks).



Figure 4: Example of a sequence of stages in the peeling decoder; each "peel" reduces the size of the erasure  $\mathcal{E}$  until empty.

## **Families of Quantum Codes**

A quantum code of length N and dimension K is a subspace of a Hilbert space; vectors are N-qubit states  $|\psi\rangle \in \mathbb{C}^N$ . Errors on a state  $|\psi\rangle$  are described discretely by N-qubit Pauli operators in  $P_N = \{I, X, Z, Y\}^{\otimes N}$ . • Stabilizer codes are defined as the space of states left fixed by some subgroup of the Pauli-group  $P_N$ . • CSS codes are a subclass of stabilizer codes defined by *commuting* N-qubit X- and Z-Pauli operators.

Figure 7: Two types of HGP stopping sets for the peeling decoder: stabilizer (left) and classical (right)

## **Stabilizer Stopping Sets and the Pruned Peeling Decoder**

1. Given erasure pattern  $\mathcal{E}$ , apply the peeling decoder algorithm until  $\mathcal{E}$  contains no remaining dangling checks. 2. If  $\mathcal{E}$  contains the qubit-support S of an X-type stabilizer, then  $S \subseteq \mathcal{E}$  is a stabilizer stopping set of  $T(H_Z)$ . 3. Remove a qubit in S from  $\mathcal{E}$  and continue peeling (errors are corrected up to multiplication by a stabilizer).

#### **Classical Stopping Sets and the Vertical-Horizontal (VH) Decoder**

1. Apply the pruned peeling decoder algorithm until  $\mathcal{E}$  contains no dangling checks and no erased stabilizers. 2.  $\mathcal{E}$  contains a classical stopping set if it contains a stopping set for  $T(H_1)$  (vertical) or  $T(H_2)$  (horizontal). 3. Apply the Gaussian (ML) decoder on classical stopping sets in sequence and continue peeling. 4. The VH decoder will terminate provided clusters of classical stopping sets do not form a closed loop.

## **Numerical Simulations and Computational Complexity**



- X- and Z-Pauli stabilizer generators define the rows of matrices  $H_X$  and  $H_Z$  (where  $H_X H_Z^T = 0$ ). -CSS Z and X error correction is modeled using the classical codes  $C_X = \ker(H_X)$  and  $C_Z = \ker(H_Z)$ . • Surface codes are a subclass of CSS codes defined from a cellulation of a surface.



### **Example of the** $3 \times 3$ **Toric Code**

- Edges define qubits.
- Vertices define X-stabilizer generators.
- $-X^{b_1a_2} = X_{a_1a_2}X_{a_2a_2}X_{b_1b_1}X_{b_1b_2}$
- Detect Z-errors on adjacent qubits.
- Plaquettes define Z-stabilizer generators.
- $-Z^{a_2b_2} = Z_{a_2a_2}Z_{a_2a_3}Z_{b_1b_2}Z_{b_2b_2}$
- Detect X-errors on adjacent qubits.
- X- and Z-stabilizers overlap on 0 or 2 qubits. - Commutivity:  $X^{b_1a_2}Z^{a_2b_2} = Z^{a_2b_2}X^{b_1a_2}$

**Figure 5:** Standard lattice visualization of the  $3 \times 3$  toric code, with labels matching the HGP Tanner graph of Figure 6.

#### Figure 8: Comparison of performance for Pruned Peeling, VH, and ML decoders for three randomly generated HGP codes.

### **VH Decoder Performance**

Simulations show that pruned peeling (with M stabilizer generators) combined with the VH decoder performs almost as well as the Gaussian (ML) decoder applied to random LDPC HGP codes at low erasure rates.

## **Complexity of the VH Decoder**

For a HGP code of length N, the classical codes used in the construction have length on the order of  $\sqrt{N}$ . • The VH decoder is dominated by the cubic complexity Gaussian decoder on these classical codes. • Complexity grows as  $O(N^{\frac{3}{2}})$  per classical code and  $O(N^2)$  across all classical codes. • Probabilistic implementation of the Gaussian decoder in quadratic complexity reduces this to  $O(N^{1.5})$ .