Fast Erasure Decoder for a Class of Quantum LDPC Codes

Nicholas Connolly, Vivien Londe, Anthony Leverrier, Nicolas Delfosse

Contributors

https://arxiv.org/abs/2208.01002

<u>Nicholas Connolly</u>¹, Vivien Londe², Anthony Leverrier¹, Nicolas Delfosse³

- ¹ INRIA Paris
- ² Microsoft France
- ³ Microsoft Quantum

Classical Error Correcting Codes: A Brief Reminder

Recall: Classical Codes

- A classical <u>linear code</u> *C* is a vector space over *Z*₂.
 - A code of <u>length</u> n is the kernel of an $r \times n$ <u>parity check matrix</u> H.
 - C has dimension k as s subspace of \mathbb{Z}_{2}^{n} .
- Vectors *x* in *C* are <u>codewords</u>.
- *C* is visualized by its bipartite <u>Tanner graph</u> *T*(*H*).

$$H = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \ker(H) = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$

T(

The Tanner Graph of a Code

• The <u>parity check matrix</u> *H* defines the bipartite <u>Tanner graph</u> *T*(*H*).

- The <u>columns</u> of *H* define the <u>bit vertices</u>: $A = \{a_1, a_2, ..., a_n\}$.
- The <u>rows</u> of *H* define the <u>check vertices</u>: $B = \{b_1, b_2, \dots, b_r\}$.
- There exists an edge between a_i and b_j if and only if $H_{i,j} \neq 0$.

Recall: Classical Error Correction

- **1.** Send initial codeword x in C in Z_2^n .
- 2. Receive corrupted codeword y = x + e in $\mathbb{Z}_{2^{n}}$.
- 3. Make syndrome measurement s = Hy = He in \mathbb{Z}_{2}^{r} .
- 4. Decoder predicts an error \hat{e} satisfying $s = H\hat{e}$.
- 5. Perform error correction $y + \hat{e}$.
- 6. Recover original codeword if $y + \hat{e} = x$.

Binary Erasure Channel

- The <u>binary erasure channel</u> erases each bit with probability *p*.
 - The set of erased bits ε is known.
- Erasure correction can be achieved using error correction.
 - Erased bits are assigned random values.

The Peeling Decoder

Erasure-Induced Subgraph of the Tanner Graph

- An <u>erasure</u> *ɛ* induces a subgraph of the <u>Tanner graph</u> *T*(*H*).
 - **Example**: $\varepsilon = \{a_3, a_4, a_5\}.$
- We can use information about *ɛ* to perform correction.
 - Non-erased bits do not have errors.

Algorithm: Peeling Dangling Checks

- 1. Given erasure pattern ε , consider the induced subgraph of T(H).
- 2. Select a <u>dangling</u> (degree 1) check in this subgraph.
- 3. Correct the adjacent bit and remove it from *ε* (shrinking the subgraph).
- Algorithm terminates when ε is empty (or gets stuck in a <u>stopping set</u>).

The complexity of the peeling decoder is linear in the number of bits.

Peeling Decoder: Full Example of a Decoder Success

- Decoding success or failure depends <u>only</u> on the erasure-induced subgraph of *T*(*H*).
- Success occurs when there exists a sequence of dangling checks that fully "peel" *ε*.

Stopping Sets for the Peeling Decoder

- An erasure-induced subgraph of *T(H)* with no dangling checks is a <u>stopping</u> <u>set</u> for the peeling decoder (the decoder fails).
- Tanner graphs for sparse codes generally have fewer stopping sets.

Quantum Code Review: Hypergraph Product Codes

Review: Families of Quantum Codes

- Recall that a <u>quantum code</u> of length *N* and dimension *K* is a subspace of a Hilbert space.
 - Vectors are *N*-qubit states $|\psi\rangle$ in \mathbb{C}^{N} .
 - Errors on a state $|\psi\rangle$ are described by *N*-qubit Pauli operators in $P_N = \{I, X, Z, Y\}^{\times N}$.
- <u>Stabilizer Codes</u> are the space of states left fixed by a subgroup of the Pauli group *P_N*.
- <u>CSS Codes</u> are stabilizer codes defined by commuting *N*-qubit *X* and *Z*-Pauli operators.
 - X- and Z-Pauli stabilizer generators define the rows of matrices H_X and H_Z (where $H_X H_Z^T = 0$).
 - CSS Z and X error correction is modeled using classical codes $C_X = \ker(H_X)$ and $C_Z = \ker(H_Z)$.
- <u>Surface Codes</u> are CSS codes defined from the cellulation of a surface.
- <u>Hypergraph Product Codes</u> are another type of CSS code.

Review: Pauli Errors for CSS Codes

• Pauli errors X_i and Z_i in P_N can be mapped onto binary strings e_i in Z_2^N .

$$E = X_1 Z_1 X_2 Z_4 \in P_4 \qquad \Leftrightarrow \qquad e_X = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} \qquad e_Z = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$$

- Pauli error correction for a CSS code can be modeled as classical error correction using *H_X* or *H_Z* (handling *X* and Z errors separately).
- The peeling decoder algorithm can be directly applied to CSS codes.

Hypergraph Product Codes: Definition

Theorem (Tillich-Zémor):

The <u>Hypergraph Product</u> (HGP) code of two classical codes $C_1 = \ker(H_1)$ and $C_2 = \ker(H_2)$ is the quantum code $C = \text{CSS}(C_X, C_Z)$, where $C_X = \ker(H_X)$ and $C_Z = \ker(H_Z)$ have parity check matrices H_X and H_Z defined from H_1 and H_2 as follows.

$$H_X = \begin{bmatrix} H_1 \otimes I & | I \otimes H_2^T \end{bmatrix}$$
$$H_Z = \begin{bmatrix} I \otimes H_2 & | H_1^T \otimes I \end{bmatrix}$$

- The matrices have sizes $H_1 = [r_1 \times n_1], H_2 = [r_2 \times n_2], \text{ thus } H_X = [r_1n_2 \times (n_1n_2 + r_1r_2)], H_Z = [r_2n_1 \times (n_1n_2 + r_1r_2)].$
- C has length $N = n_1 n_2 + r_1 r_2$ and dimension $K = N \operatorname{rank}(H_X) \operatorname{rank}(H_Z)$
- C has minimum distance min (d_1, d_2) , where d_1 and d_2 are the minimum distances of C_1 and C_2 .

Hypergraph Product Codes: Tanner Graph Structure

 B_1 B_2 B_2 A_1 As As $(X error checks/rows of H_Z)$ $-110000000 - 100000100^{-1}$ generators bit \times bit (horz.) qubits $a_1 a_2$ 010000010 a_1 b_1 a_1 a011000000 a_1b_2 b_1 $a_1 b$ a_1b_2 101000000 001000001 000110000 100100000 000011000 010010000 $H_Z =$ A_1 000101000 001001000 $a_2 a_2$ $a \circ a \circ$ a_2b_1 a_2b_2 Z-stabilizer bo a_2b_3 000000110 000100100 000000011 000010010 000000101 000001001 $a_3 a_3$ $a_3 b$ $a_3 b_3$ a_3b_2 $I \otimes H_2 \mid H_1^T \otimes I$ check (vert.) qubits (Z-error checks/rows of H_X) F100100000 101000000 $T(H_1)$ $T(H_2)$ \cong X-stabilizer generators 010010000 11000000 01a9 b_1a_3 001001000 011000000 000100100 000101000 $H_1 = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = H_2$ 000010010 000110000 $H_X =$ B_1 000011000 000001001 b_2a_3 $b_2 a_2$ 000000101 100000100 010000010 000000110 \times 001000001 000000011 check $b_{3}a_{2}$ b_3a_3 $H_1 \otimes I \mid I \otimes H_2^T$

Hypergraph Product Codes: Z-type Stabilizer Generators

18

Hypergraph Product Codes: X-type Stabilizer Generators

19

Aside: Toric Code HGP Picture versus Lattice Picture

Generalized Peeling Decoder for HGP Codes

Peeling Decoder Applied to HGP Codes

- NAIVE IDEA
 - Does the basic peeling decoder perform well when applied to HGP codes?
- PROBLEM
 - In practice, the peeling decoder applied to HGP codes performs poorly.
 - The decoder often fails because of stopping sets unique to HGP codes.
- STRATEGY
 - Modify the decoder to overcome the most common stopping sets.
 - Generalized algorithm combines peeling with additional techniques.

Numerical Preview: Naive Peeling Decoder vs. ML Decoder

CASE 1: Stabilizer Stopping Sets

The qubit support of an X-type stabilizer is a stopping set for the Tanner graph $T(H_z)$.

PROOF

- → Each X-type stabilizer commutes with Z-type stabilizer generators by construction $(H_Z H_X^T = 0)$.
- → The binary representation of an X-stabilizer is a codeword for the classical code $C = \ker(H_z)$.
- → Each row of H_Z (Z generator) is adjacent to an even number of qubits in the support of the X-stabilizer.
- ➔ The subgraph induced by this support contains no degree 1 checks (hence, it is a stopping set).

Visualizing Stabilizer Stopping Sets in the Tanner Graph

Algorithm: Pruned Peeling Decoder

- 1. Given erasure pattern ε, apply the standard peeling decoder until stuck.
- 2. Check whether ε contains the qubitsupport S of a stabilizer.
 - If so, then S is a <u>stabilizer stopping set</u>.
- 3. Break S by removing some qubit from the erasure ε, shrinking the subgraph.
 - This is possible since errors are corrected up to multiplication by a stabilizer.
- 4. Continue with the peeling decoder.

Restrictions on Searching for Stabilizer Stopping Sets

- Any product of *M* stabilizer generators defines a valid X-stabilizer.
 - Naive peeling corresponds to M = 0.
 - Using only single X-stabilizer generators corresponds to M = 1 (the rows of H_X).
 - It is not easy to search for arbitrary products of stabilizer generators with large values of *M*.
- Numerically, we see almost no performance increase for large *M*.
 - The gap is negligible between M = 1 and M = 2.
 - We only consider up to M = 2 in simulations.

Subgraph Induced by Pruned Peeling Decoder Stopping Sets

Subgraph for a stopping set of the 3 × 3 toric code shown on the standard lattice.

Example of the subgraph induced by a stopping set for a 1600-qubit HGP code.

CASE 2: Classical Stopping Sets

- The Tanner graph T(H_z) contains copies of T(H₂) and T(H₁^T) as subgraphs.
 - Horizontal copies of *T*(*H*₂).
 - Vertical copies of $T(H_1^T)$.
- Stopping sets for T(H₂) and T(H₁^T) lift to stopping sets of T(H_z) on a row or column.
- These are horizontal and vertical <u>classical</u> <u>stopping sets</u> for *T*(*H*_z) in the HGP code.

$$H_Z = \begin{bmatrix} I \otimes H_2 & | & H_1^T \otimes I \end{bmatrix}$$

Formalizing Horizontal and Vertical Stopping Sets

- The HGP Tanner graph *T*(*H_z*) is the product of two bipartite classical Tanner graphs.
 - $T(H_1) = (A_1 \cup B_1, E_1)$, where $A_1 = bits$, $B_1 = checks$.
 - $T(H_2) = (A_2 \text{ u } B_2, E_2)$, where $A_2 = \text{bits}$, $B_2 = \text{checks}$.
- Classical stopping sets in *T*(*H_z*) can be decomposed into classical components.
 - Horizontal stopping sets have the form $\{a_i\} \times S_{A2}$ in $A_1 \times A_2$, where S_{A2} is a stopping set of $T(H_2)$.
 - Vertical stopping sets have the form $S_{B1} \times \{b_j\}$ in $B_1 \times B_2$, where S_{B1} is a stopping set of $T(H_1^T)$.

 B_2

 A_2

Relative Size and Quantity of Classical Stopping Sets

Classical code lengths n_1 and n_2

HGP code length N

- The sizes of *H*₁ and *H*₂ determine the length *N* of the HGP code.
- Assuming that $n_1 \approx n_2 \approx r_1 \approx r_2$, the classical codes $C_1 = \ker(H_1)$ and $C_2 = \ker(H_2)$ have length $n_1 = O(\sqrt{N}) = n_2$ when compared with the length of the HGP code.
- For each classical stopping set of $T(H_2)$ and $T(H_1^T)$, the Tanner graph $T(H_Z)$ contains on the order of $O(\sqrt{N})$ horizontal and vertical stopping sets.

Further Generalizing the Pruned Peeling Decoder

- OBSERVATION
 - Numerically, the majority of Pruned Peeling Decoder stopping sets are classical.
- INTUITION
 - The maximum likelihood decoder uses cubic complexity Gaussian elimination, which is too slow; but can it be applied efficiently to smaller classical stopping sets?

• CONSIDERATIONS

- If there exist multiple classical stopping sets, how do they interact with each other?
- Are classical stopping set solutions always consistent with the HGP solution?
- In combination with peeling, can these stopping sets always be eliminated?

The Vertical-Horizontal (VH) Graph

- Given an erasure pattern ε, define the vertical-horizontal graph as follows.
 - Vertices are <u>clusters</u> of erased qubits in the same connected component and row/column of *T*(*H_z*).
 - There exists an edge between clusters if there exists a check in $T(H_z)$ adjacent to a qubit in each.
- The VH graph is closely related to the erasure-induced subgraph of *T*(*H*_z).
 - Any two clusters share at most one check (edge).
 - There does not exist an edge between two clusters of the same type (horizontal or vertical).
 - In other words, the VH graph is bipartite.

Types of Cluster Configurations in the VH Graph

Cluster Cycle

Isolated Cluster

Cluster Tree

34

Algorithm: Vertical-Horizontal (VH) Decoder

- **1.** Given erasure pattern ε, apply the prunedpeeling decoder until stuck in a stopping set.
- 2. Compute the VH-graph of ϵ .
- 3. If there exist <u>isolated clusters</u>, solve cluster using Gaussian elimination, then lift solution.
- 4. If there exist <u>dangling clusters</u>, search for a solution in sequence*, then continue peeling.
 - The order and steps depend on the clusters.
- 5. If there exist no remaining dangling clusters nor checks, this is a VH decoder stopping set.
 - For example, a cycle of clusters in the VH graph.

Peeling Dangling Clusters in Sequence

- An edge between two clusters in the VH graph defines a <u>connecting check</u> in *T(Hz)*.
- There are two possibilities for dangling clusters.
 - A connecting check is <u>free</u> if it is the (weight 1) syndrome of a vector in this dangling cluster.
 - Otherwise, the connecting check is <u>frozen</u>.
- <u>Frozen dangling clusters</u> can be solved like isolated clusters and removed from the graph.
 - Solutions have the same contribution to this check.
- <u>Free dangling clusters</u> can be removed from the VH graph and solved after the other clusters.
 - A cluster solution exists independent of this check.

Performance of the Pruned Peeling and VH Decoders

Comparison of Performance with Gaussian (ML) Decoder

Performance Comparisons for Other Examples of HGP Codes

- pruned peeling decoder (M=2)
- ---- Gaussian (ML) decoder

Computational Complexity of the Combined Decoder

The computational complexity of combined pruned peeling and VH decoders is dominated by Gaussian elimination applied to clusters.

- Clusters in the VH graph have size $O(\sqrt{N})$, where N is the HGP code length.
- On a single cluster, cubic-complexity Gaussian decoder contributes $O(N^{1.5})$.
- The number of possible clusters grows as $O(\sqrt{N})$.
- Across all clusters, the VH-decoder has complexity $O(N^2)$.
- With a probabilistic implementation of the Gaussian decoder, this can be further reduced to $O(N^{1.5})$ in total.

