
Fast Erasure Decoder for a Class of Quantum LDPC Codes

Nicholas Connolly, Vivien Londe, Anthony Leverrier, Nicolas Delfosse

2

Contributors

https://arxiv.org/abs/2208.01002

Nicholas Connolly1, Vivien Londe2, Anthony Leverrier1, Nicolas Delfosse3
1 INRIA Paris
2 Microsoft France
3 Microsoft Quantum

3

Classical Error Correcting Codes:
A Brief Reminder

PART 1

4

Recall: Classical Codes

● A classical linear code C is a vector space over Z2.
– A code of length n is the kernel of an r × n parity check matrix H.
– C has dimension k as s subspace of Z2

n.
● Vectors x in C are codewords.
● C is visualized by its bipartite Tanner graph T(H).

5

The Tanner Graph of a Code

● The parity check matrix H defines the bipartite Tanner graph T(H).
– The columns of H define the bit vertices: A = {a1,a2,…,an}.
– The rows of H define the check vertices: B = {b1,b2,…,br}.
– There exists an edge between ai and bj if and only if Hi,j ≠ 0.

a5

b1

b3

6

Recall: Classical Error Correction

1. Send initial codeword x in C in Z2
n.

2. Receive corrupted codeword y = x + e in Z2
n.

3. Make syndrome measurement s = Hy = He in Z2
r .

4. Decoder predicts an error ê satisfying s = Hê.

5. Perform error correction y + ê.

6. Recover original codeword if y + ê = x.

7

Binary Erasure Channel

● The binary erasure channel erases
each bit with probability p.
– The set of erased bits ε is known.

● Erasure correction can be achieved
using error correction.
– Erased bits are assigned random values.

8

PART 2

The Peeling Decoder

9

Erasure-Induced Subgraph of the Tanner Graph

● An erasure ε induces a subgraph of the Tanner graph T(H).
– Example: ε = {a3,a4,a5}.

● We can use information about ε to perform correction.
– Non-erased bits do not have errors.

a3 a4 a5

10

Algorithm: Peeling Dangling Checks

1. Given erasure pattern ε, consider the
induced subgraph of T(H).

2. Select a dangling (degree 1) check in
this subgraph.

3. Correct the adjacent bit and remove
it from ε (shrinking the subgraph).

4. Algorithm terminates when ε is empty
(or gets stuck in a stopping set).

The complexity of the peeling decoder is
linear in the number of bits.

11

Peeling Decoder: Full Example of a Decoder Success

● Decoding success or failure depends only on the erasure-induced subgraph of T(H).
● Success occurs when there exists a sequence of dangling checks that fully “peel” ε.

12

Stopping Sets for the Peeling Decoder

● An erasure-induced subgraph of T(H) with no dangling checks is a stopping
set for the peeling decoder (the decoder fails).

● Tanner graphs for sparse codes generally have fewer stopping sets.

a5 a6 a7

13

PART 3

Quantum Code Review:
Hypergraph Product Codes

14

Review: Families of Quantum Codes

● Recall that a quantum code of length N and dimension K is a subspace of a Hilbert space.
– Vectors are N-qubit states |ψ) in CN.
– Errors on a state |ψ) are described by N-qubit Pauli operators in PN = {I,X,Z,Y}×N.

● Stabilizer Codes are the space of states left fixed by a subgroup of the Pauli group PN.
● CSS Codes are stabilizer codes defined by commuting N-qubit X- and Z-Pauli operators.

– X- and Z-Pauli stabilizer generators define the rows of matrices HX and HZ (where HXHZ
T = 0).

– CSS Z and X error correction is modeled using classical codes CX = ker(HX) and CZ = ker(HZ).
● Surface Codes are CSS codes defined from the cellulation of a surface.
● Hypergraph Product Codes are another type of CSS code.

15

Review: Pauli Errors for CSS Codes

● Pauli errors Xi and Zi in PN can be mapped onto binary strings ei in Z2
N.

● Pauli error correction for a CSS code can be modeled as classical
error correction using HX or HZ (handling X and Z errors separately).

● The peeling decoder algorithm can be directly applied to CSS codes.

16

Hypergraph Product Codes: Definition

Theorem (Tillich-Zémor):

The Hypergraph Product (HGP) code of two classical codes C1 = ker(H1) and
C2 = ker(H2) is the quantum code C = CSS(CX,CZ), where CX = ker(HX) and CZ = ker(HZ)
have parity check matrices HX and HZ defined from H1 and H2 as follows.

● The matrices have sizes H1 = [r1 × n1], H2 = [r2 × n2], thus HX = [r1n2 × (n1n2 + r1r2)], HZ = [r2n1 × (n1n2 + r1r2)].
● C has length N = n1n2 + r1r2 and dimension K = N – rank(HX) – rank(HZ)
● C has minimum distance min(d1,d2), where d1 and d2 are the minimum distances of C1 and C2.

17

Hypergraph Product Codes: Tanner Graph Structure

18

Hypergraph Product Codes: Z-type Stabilizer Generators

a2b2

a2a2
a2a3

b1b2 b2b2

19

Hypergraph Product Codes: X-type Stabilizer Generators

b2a2

b2b1
b2b2

a2a2 a3a2

20

Aside: Toric Code HGP Picture versus Lattice Picture

21

PART 4

Generalized Peeling Decoder for HGP Codes

22

Peeling Decoder Applied to HGP Codes

● NAIVE IDEA
– Does the basic peeling decoder perform well when applied to HGP codes?

● PROBLEM
– In practice, the peeling decoder applied to HGP codes performs poorly.
– The decoder often fails because of stopping sets unique to HGP codes.

● STRATEGY
– Modify the decoder to overcome the most common stopping sets.
– Generalized algorithm combines peeling with additional techniques.

23

Numerical Preview: Naive Peeling Decoder vs. ML Decoder

Peeling decoder

ML decoder

} Gap between Peeling and ML decoders

24

The qubit support of an X-type stabilizer is a stopping set for the Tanner graph T(HZ).

PROOF
➔ Each X-type stabilizer commutes with Z-type stabilizer generators by construction (HZHX

T = 0).
➔ The binary representation of an X-stabilizer is a codeword for the classical code C = ker(HZ).
➔ Each row of HZ (Z generator) is adjacent to an even number of qubits in the support of the X-stabilizer.
➔ The subgraph induced by this support contains no degree 1 checks (hence, it is a stopping set).

CASE 1: Stabilizer Stopping Sets

25

Visualizing Stabilizer Stopping Sets in the Tanner Graph

b2a2

a2a2
a3a2 b2b2

b2b1 a2a2
a3a2 b2b2

b2b1

a2b1

a2b2

a3b1

a3b2

26

Algorithm: Pruned Peeling Decoder

1. Given erasure pattern ε, apply the
standard peeling decoder until stuck.

2. Check whether ε contains the qubit-
support S of a stabilizer.
• If so, then S is a stabilizer stopping set.

3. Break S by removing some qubit from
the erasure ε, shrinking the subgraph.
• This is possible since errors are corrected

up to multiplication by a stabilizer.

4. Continue with the peeling decoder.

27

Restrictions on Searching for Stabilizer Stopping Sets

● Any product of M stabilizer generators
defines a valid X-stabilizer.
– Naive peeling corresponds to M = 0.
– Using only single X-stabilizer generators

corresponds to M = 1 (the rows of HX).
– It is not easy to search for arbitrary products

of stabilizer generators with large values of M.
● Numerically, we see almost no

performance increase for large M.
– The gap is negligible between M = 1 and M = 2.
– We only consider up to M = 2 in simulations.

Peelin
g decoder

Pruned peelin
g decoder

ML decoder

M = 0
M = 1
M = 2}gap

28

Subgraph Induced by Pruned Peeling Decoder Stopping Sets

Subgraph for a stopping set of the 3 × 3
toric code shown on the standard lattice.

Example of the subgraph induced by a
stopping set for a 1600-qubit HGP code.

29

CASE 2: Classical Stopping Sets

● The Tanner graph T(HZ) contains copies of
T(H2) and T(H1

T) as subgraphs.
– Horizontal copies of T(H2).
– Vertical copies of T(H1

T).
● Stopping sets for T(H2) and T(H1

T) lift to
stopping sets of T(HZ) on a row or column.

● These are horizontal and vertical classical
stopping sets for T(HZ) in the HGP code.

T(H2)

T(H2)

T(H2)

T(H1
T) T(H1

T) T(H1
T)

30

Formalizing Horizontal and Vertical Stopping Sets

● The HGP Tanner graph T(HZ) is the product
of two bipartite classical Tanner graphs.
– T(H1) = (A1 u B1, E1), where A1 = bits, B1 = checks.
– T(H2) = (A2 u B2, E2), where A2 = bits, B2 = checks.

● Classical stopping sets in T(HZ) can be
decomposed into classical components.
– Horizontal stopping sets have the form {ai} × SA2

in A1 × A2, where SA2 is a stopping set of T(H2).
– Vertical stopping sets have the form SB1 × {bj} in

B1 × B2, where SB1 is a stopping set of T(H1
T).

{a2} × SA2

SB1 × {b2}

31

Relative Size and Quantity of Classical Stopping Sets

● The sizes of H1 and H2 determine the length N of the HGP code.
● Assuming that n1 ≈ n2 ≈ r1 ≈ r2, the classical codes C1 = ker(H1) and C2 = ker(H2)

have length n1 = O(√N) = n2 when compared with the length of the HGP code.
● For each classical stopping set of T(H2) and T(H1

T), the Tanner graph T(HZ)
contains on the order of O(√N) horizontal and vertical stopping sets.

Classical code lengths n1 and n2 HGP code length N

32

Further Generalizing the Pruned Peeling Decoder

● OBSERVATION
– Numerically, the majority of Pruned Peeling Decoder stopping sets are classical.

● INTUITION
– The maximum likelihood decoder uses cubic complexity Gaussian elimination,

which is too slow; but can it be applied efficiently to smaller classical stopping sets?
● CONSIDERATIONS

– If there exist multiple classical stopping sets, how do they interact with each other?
– Are classical stopping set solutions always consistent with the HGP solution?
– In combination with peeling, can these stopping sets always be eliminated?

33

The Vertical-Horizontal (VH) Graph

● Given an erasure pattern ε, define the
vertical-horizontal graph as follows.
– Vertices are clusters of erased qubits in the same

connected component and row/column of T(HZ).
– There exists an edge between clusters if there

exists a check in T(HZ) adjacent to a qubit in each.
● The VH graph is closely related to the

erasure-induced subgraph of T(HZ).
– Any two clusters share at most one check (edge).
– There does not exist an edge between two

clusters of the same type (horizontal or vertical).
– In other words, the VH graph is bipartite.

34

Types of Cluster Configurations in the VH Graph

Isolated Cluster Cluster Tree Cluster Cycle

35

Algorithm: Vertical-Horizontal (VH) Decoder

1. Given erasure pattern ε, apply the pruned-
peeling decoder until stuck in a stopping set.

2. Compute the VH-graph of ε.

3. If there exist isolated clusters, solve cluster
using Gaussian elimination, then lift solution.

4. If there exist dangling clusters, search for a
solution in sequence*, then continue peeling.
• The order and steps depend on the clusters.

5. If there exist no remaining dangling clusters
nor checks, this is a VH decoder stopping set.
• For example, a cycle of clusters in the VH graph.

36

Peeling Dangling Clusters in Sequence

● An edge between two clusters in the VH graph
defines a connecting check in T(HZ).

● There are two possibilities for dangling clusters.
– A connecting check is free if it is the (weight 1)

syndrome of a vector in this dangling cluster.
– Otherwise, the connecting check is frozen.

● Frozen dangling clusters can be solved like
isolated clusters and removed from the graph.
– Solutions have the same contribution to this check.

● Free dangling clusters can be removed from the
VH graph and solved after the other clusters.
– A cluster solution exists independent of this check.

37

PART 5

Performance of the Pruned Peeling and VH Decoders

38

Comparison of Performance with Gaussian (ML) Decoder

Peeling decoder

Pruned peeling decoder

VH decoder

ML decoder

39

Performance Comparisons for Other Examples of HGP Codes

40

Computational Complexity of the Combined Decoder

The computational complexity of combined pruned peeling and VH
decoders is dominated by Gaussian elimination applied to clusters.
– Clusters in the VH graph have size O(√N), where N is the HGP code length.
– On a single cluster, cubic-complexity Gaussian decoder contributes O(N1.5).
– The number of possible clusters grows as O(√N).
– Across all clusters, the VH-decoder has complexity O(N2).
– With a probabilistic implementation of the Gaussian decoder, this can be

further reduced to O(N1.5) in total.

41

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

