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Classical Error Correcting Codes:
A Brief Reminder

—



Recall: Classical Codes

* Aclassical linear code Cis a vector space over Z.,.

— Acode of length nis the kernel of an r x n parity check matrix H.

— Chasdimension k as s subspace of Z.".

* Vectors xin C are codewords.

* Cisvisualized by its bipartite Tanner graph T(H).
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The Tanner Graph of a Code

* The parity check matrix H defines the bipartite Tanner graph T(H).

— The columns of H define the bit vertices: A={a;,a,,...,a,}.
— The rows of H define the check vertices: B ={bs,b,,...,b}. ai
— There exists an edge between a;and b;if and only if H;; Z 0. s ;
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Recall: Classical Error Correction

message corruption syndrome
1 1 0 1 1 1. Send initial codeword xin Cin Z,".
1 1 1 0 2. Receive corrupted codeword y=x+ein Z,".
1 = Lf + 10 =11 = 0
| | 0 | 0 3. Make syndrome measurements=Hy =Hein Z,".
1 1 0 1 0 4. Decoder predicts an error € satisfying s = Hé.
v rre=y s=Hy 5. Perform error correction y + é.
prediction correction recovery 6. Recover original codeword if y + é = x.
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Binary Erasure Channel

* The binary erasure channel erases = CLastire assignunent
each bit with probability p. | | 1
- The set of erased bits € is known. 1 7 0
e Erasure correction can be achieved 1 = 1 = 1
using error correction. 1 7 1
- Erased bits are assigned random values. 1 ? 0
- - | _y_
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The Peeling Decoder
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Erasure-Induced Subgraph of the Tanner Graph

* An erasure € induces a subgraph of the Tanner graph T(H).

— Example: € ={a3040s}.

* We can use information about & to perform correction.

— Non-erased bits do not have errors. by
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Algorithm: Peeling Dangling Checks

1. Given erasure pattern g, consider the
induced subgraph of T(H).

2. Select a dangling (degree 1) check in
this subgraph.

3. Correct the adjacent bit and remove
it from & (shrinking the subgraph).

4. Algorithm terminates when € is empty
(or gets stuck in a stopping set).

The complexity of the peeling decoder is
linear in the number of bits.
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Peeling Decoder: Full Example of a Decoder Success

* Decoding success or failure depends only on the erasure-induced subgraph of T(H).

* Success occurs when there exists a sequence of dangling checks that fully “peel” &.




Stopping Sets for the Peeling Decoder

* An erasure-induced subgraph of T(H) with no dangling checks is a stopping
set for the peeling decoder (the decoder fails).

* Tanner graphs for sparse codes generally have fewer stopping sets.
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Quantum Code Review:
Hypergraph Product Codes

ﬁ



Review: Families of Qquantum Codes

* Recall that a quantum code of length N and dimension K is a subspace of a Hilbert space.

— Vectors are N-qubit states |@) in CM.
- Errors on a state |) are described by N-qubit Pauli operators in Py ={,X,Z,Y}*.

 Stabilizer Codes are the space of states left fixed by a subgroup of the Pauli group P..

* CSS Codes are stabilizer codes defined by commuting N-qubit X- and Z-Pauli operators.

- X-and Z-Pauli stabilizer generators define the rows of matrices Hyand H; (where HxH," = 0).

— (€SS Zand X error correction is modeled using classical codes Cx = ker(Hx) and C; = ker(H.).

» Surface Codes are CSS codes defined from the cellulation of a surface.

* Hypergraph Product Codes are another type of CSS code.

ﬁ




Review: Pauli Errors for CSS Codes

* Pauli errors X;and Z;in Py can be mapped onto binary strings e;in Z,".
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* Pauli error correction for a CSS code can be modeled as classical
error correction using Hyor H; (handling X and Z errors separately).

* The peeling decoder algorithm can be directly applied to CSS codes.
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Hypergraph Product Codes: Definition

Theorem (Tillich-Zémor):

The Hypergraph Product (HGP) code of two classical codes C; = ker(H;) and
C.=ker(H,) is the quantum code C = CSS(Cx,C;), where Cx=ker(Hx) and C;=ker(Hz)
have parity check matrices Hx and H; defined from H; and H, as follows.

Hy = | Hi®I | I®H; |
H; = | I®Hy | H &I |

 The matrices havesizes H;=[rixn;],H>=[r2xn; ], thus Hx=[ rin; % (ninz + rir2) 1, Hz=[ rn: % (n:nz + rir2) 1.

* Chaslength N=n;n;+rir,and dimension K= N - rank(Hyx) - rank(H;)

* Chas minimum distance min(d,,d.), where d; and d; are the minimum distances of C; and C..




Hypergraph Product Codes: Tanner Graph Structure
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Hypergraph Product Codes: Z-type Stabilizer Generators
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Hypergraph Product Codes: X-type Stabilizer Generators
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Aside: Toric Code HGP Picture versus Lattice Picture

C
AR
g £ .
- £ b3bs b1bs babs3
3 2z
- o =
= &b aias aoa3 a3zds
= ! A o2 ( ) ( N A
g 1 5 =e(bsaz biag baasz
g S 2 B p4
e} "D [
s g g
= N P bibo biby Db
o)
& ! =z aja9 \ an2a9 /'\ asa9
3 5 101 102 143 ! = 4 "7
N H -z
=24 By ||baaq] [boas| [boas]! = b3by b1by baby
= 02 — P
<
= 3 E
v a1dq Aoy asaq
=4 % . I ﬁ snnalf501q bla.\l 62(1-1
.y bsai| |bsas| |bsas|: 3 : N4
= ' 5 : : :




Generalized Peeling Decoder for HGP Codes

ﬁ



Peeling Decoder Applied to HGP Codes

° NAIVE IDEA
— Does the basic peeling decoder perform well when applied to HGP codes?
* PROBLEM

— In practice, the peeling decoder applied to HGP codes performs poorly.

— The decoder often fails because of stopping sets unique to HGP codes.
e STRATEGY

— Modify the decoder to overcome the most common stopping sets.

— Generalized algorithm combines peeling with additional techniques.
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Numerical Preview: Naive Peeling Decoder vs. ML Decoder

Pruned Peeling/VH Decoder Performance with [2025,81] HGP Code
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CASE 1: Stabilizer Stopping Sets

The qubit support of an X-type stabilizer is a stopping set for the Tanner graph T(H;).

PROOF

2 Each X-type stabilizer commutes with Z-type stabilizer generators by construction (H-Hx"=0).
2 The binary representation of an X-stabilizer is a codeword for the classical code C = ker(H,).
2 Each row of H; (Z generator) is adjacent to an even number of qubits in the support of the X-stabilizer.

2 The subgraph induced by this support contains no degree 1 checks (hence, it is a stopping set).
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Visualizing Stabilizer Stopping Sets in the Tanner Graph
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Algorithm: Pruned Peeling Decoder

1. Given erasure pattern g, apply the
standard peeling decoder until stuck.

2. Check whether € contains the qubit-
support S of a stabilizer.

* Ifso, then Sis a stabilizer stopping set.

3. Break S by removing some qubit from
the erasure g, shrinking the subgraph.

* Thisis possible since errors are corrected
up to multiplication by a stabilizer.

4. Continue with the peeling decoder.




Restrictions on Searching for Stabilizer Stopping Sets

* Any product of M stabilizer generators

. . .. Pruned Peeling/VH Decoder Performance with [2025,81] HGP Code
defines a valid X-stabilizer.

M=0
'M=1
‘M=2
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— Naive peeling corresponds to M =0.
1072

= Using only single X-stabilizer generators
corresponds to M =1 (the rows of Hy).

— Itis not easy to search for arbitrary products
of stabilizer generators with large values of M.
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* Numerically, we see almost no
performance increase for large M.
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— The gapis negligible between M=1and M=2.

- Weonly consider up to M =2 in simulations.
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Subgraph Induced by Pruned Peeling Decoder Stopping Sets

i

Subgraph for a stopping set of the 3 x 3 Example of the subgraph induced by a
toric code shown on the standard lattice. stopping set for a 1600-qubit HGP code.
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CASE 2: Classical Stopping Sets

The Tanner graph T(H;) contains copies of
T(H;) and T(H,") as subgraphs.

- Horizontal copies of T(H). A

— Vertical copies of T(H/").

* Stopping sets for T(H,) and T(H:") lift to
stopping sets of T(Hz) on a row or column.

[1cn] [rao] [Puas]:

* These are horizontal and vertical classical
stopping sets for T(H;) in the HGP code.

By ||boay| [boas] |52&3|§

[aar] [Pmaz) [Pmas)
=1

Hy = | I¢gH|||H®I] T(H) T(H) T(H,)
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Formalizing Horizontal and Vertical Stopping Sets

* The HGP Tanner graph T(H;) is the product .
of two bipartite classical Tanner graphs. i by

- T(Hl) = (Al u By, El), where A; = bitS, B; = checks.
- T(Hz) = (Az uB,, Ez), where A; = bitS, B, = checks.

Ay | 20q) (@209 (@203 asby | | asbo 2b3

{a2} % Su

* Classical stopping sets in T(H;) can be
decomposed into classical components.

_______________________________________

— Horizontal stopping sets have the form {a;} X S
in A; X A;, where Sy is a stopping set of T(H.).

— Vertical stopping sets have the form Sg; x {b} in B
B: % B,, where Sg; is a stopping set of T(H,").




Relative Size and Quantity of Classical Stopping Sets

Hy = |ri xny N Hx = |rino X (nins + riry)
Hy = |ro Xno Hyzy = |rong X |(ning + rirsy)
Classical code lengths n; and n; HGP code length N

* The ssizes of H; and H, determine the length N of the HGP code.

* Assumingthat n;=n,=r;=r,, the classical codes C; =ker(H;) and C, = ker(H,)
have length n; = O(vVN) = n, when compared with the length of the HGP code.

* For each classical stopping set of T(H,) and T(H;'), the Tanner graph T(H;)
contains on the order of O(vVN) horizontal and vertical stopping sets.
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Further Generalizing the Pruned Peeling Decoder

* OBSERVATION
— Numerically, the majority of Pruned Peeling Decoder stopping sets are classical.
* INTUITION

— The maximum likelihood decoder uses cubic complexity Gaussian elimination,
which is too slow; but can it be applied efficiently to smaller classical stopping sets?

* CONSIDERATIONS
— If there exist multiple classical stopping sets, how do they interact with each other?

— Are classical stopping set solutions always consistent with the HGP solution?

- In combination with peeling, can these stopping sets always be eliminated?

ﬂ



The Vertical-Horizontal (VH) Graph

* Given an erasure pattern g, define the !
vertical-horizontal graph as follows. 109 (10540, 04)

— Vertices are clusters of erased qubits in the same *\ NN
connected component and row/column of T(H_). ; azba ] |
— There exists an edge between clusters if there -
exists a check in T(H;) adjacent to a qubit in each. :

* The VH graph is closely related to the § i
erasure-induced subgraph of T(H;). § V)
— Any two clusters share at most one check (edge).

— There does not exist an edge between two
clusters of the same type (horizontal or vertical).

— In other words, the VH graph is bipartite. ]

ﬂ



Types of Cluster Configurations in the VH Graph

Eod TICIS, 5
© @ Qe (OO0 peEg | SXCIC T mym
Isolated Cluster Cluster Tree Cluster Cycle
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Algorithm: Vertical-Horizontal (VH) Decoder

1. Given erasure pattern g, apply the pruned-

peeling decoder until stuck in a stopping set. ‘ a1 a1b3

2. Compute the VH-graph of €.

3. If there exist isolated clusters, solve cluster

using Gaussian elimination, then lift solution. ‘. . . "

4. If there exist dangling clusters, searchfora | = = __1 JF - _1_

solution in sequence*, then continue peeling. :

* The order and steps depend on the clusters

5. If there exist no remaining dangling clusters

nor checks, this is a VH decoder stopping set. | @ @

* Forexample, a cycle of clusters in the VH graph. N N

ﬂ




Peeling Dangling Clusters in Sequence

* An edge between two clusters in the VH graph
defines a connecting check in T(H;). i
* There are two possibilities for dangling clusters. ______ .
— Aconnecting check is free if it is the (weight 1) ‘ F a2by .Eq;?;.jﬁi
syndrome of a vector in this dangling cluster. i =
— Otherwise, the connecting check is frozen.
* Frozen dangling clusters can be solved like ------------------ 5::::::::5-
isolated clusters and removed from the graph. §
— Solutions have the same contribution to this check.
* Free dangling clusters can be removed from the
VH graph and solved after the other clusters.
— Acluster solution exists independent of this check. ! LELLLLIE :
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Performance of the Pruned Peeling and VH Decoders
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Comparison of Performance with Gaussian (ML) Decoder
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Performance Comparisons for Other Examples of HGP Codes

[1600,64] HGP Code

[625,25] HGP Code [1225,65] HGP Code
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Computational Complexity of the Combined Decoder

The computational complexity of combined pruned peeling and VH
decoders is dominated by Gaussian elimination applied to clusters.

Clusters in the VH graph have size O(vN), where N is the HGP code length.
On a single cluster, cubic-complexity Gaussian decoder contributes O(N*°).
The number of possible clusters grows as O(VN).

Across all clusters, the VH-decoder has complexity O(N?).

With a probabilistic implementation of the Gaussian decoder, this can be
further reduced to O(N*?°) in total.
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