Fast Erasure Decoder for a Class of Quantum LDPC Codes

Nicholas Connolly, Vivien Londe, Anthony Leverrier, Nicolas Delfosse

Contributors

https://arxiv.org/abs/2208.01002

Nicholas Connolly ${ }^{1}$, Vivien Londe ${ }^{2}$, Anthony Leverrier ${ }^{1}$, Nicolas Delfosse ${ }^{3}$
${ }^{1}$ INRIA Paris
${ }^{2}$ Microsoft France
${ }^{3}$ Microsoft Quantum

Classical Error Correcting Codes: A Brief Reminder

Recall: Classical Codes

- A classical linear code C is a vector space over Z_{2}.
- A code of length n is the kernel of an $r \times n$ parity check matrix H.
- C has dimension k as s subspace of $\mathbf{Z}_{2}{ }^{n}$.
- Vectors x in C are codewords.
- C is visualized by its bipartite Tanner graph $T(H)$.
$H=\left[\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1\end{array}\right]$
$\operatorname{ker}(H)=\left\{\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]\right\}$

The Tanner Graph of a Code

- The parity check matrix H defines the bipartite Tanner graph $T(H)$.
- The columns of H define the bit vertices: $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
- The rows of H define the check vertices: $B=\left\{b_{1}, b_{2}, \ldots, b_{r}\right\}$.
- There exists an edge between a_{i} and b_{j} if and only if $H_{i, j} \neq 0$.

Recall: Classical Error Correction

prediction

\hat{e}
correction

$y+\hat{e}$

1. Send initial codeword x in C in $Z_{2}{ }^{n}$.
2. Receive corrupted codeword $y=x+e$ in $Z_{2}{ }^{n}$.
3. Make syndrome measurement $s=H y=H e$ in $Z_{2}{ }^{r}$.
4. Decoder predicts an error ê satisfying $s=H e ̂$.
5. Perform error correction $y+\hat{e}$.
6. Recover original codeword if $y+\hat{e}=x$.

Binary Erasure Channel

- The binary erasure channel erases each bit with probability p.
- The set of erased bits ε is known.
- Erasure correction can be achieved using error correction.
- Erased bits are assigned random values.

message

erasure

assignment

The Peeling Decoder

Erasure-Induced Subgraph of the Tanner Graph

- An erasure $\boldsymbol{\varepsilon}$ induces a subgraph of the Tanner graph $T(H)$.
- Example: $\varepsilon=\left\{a_{3}, a_{4}, a_{5}\right\}$.
- We can use information about ε to perform correction.
- Non-erased bits do not have errors.

$$
x^{\prime}=\left[\begin{array}{l}
1 \\
1 \\
? \\
? \\
? \\
1 \\
0
\end{array}\right]
$$

$$
H=\left[\begin{array}{ll|lll|ll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

Algorithm: Peeling Dangling Checks

1. Given erasure pattern ε, consider the induced subgraph of $T(H)$.
2. Select a dangling (degree 1) check in this subgraph.
3. Correct the adjacent bit and remove it from ε (shrinking the subgraph).
4. Algorithm terminates when ε is empty (or gets stuck in a stopping set).

The complexity of the peeling decoder is linear in the number of bits.

Peeling Decoder: Full Example of a Decoder Success

- Decoding success or failure depends only on the erasure-induced subgraph of $T(H)$.
- Success occurs when there exists a sequence of dangling checks that fully "peel" ε.

Stopping Sets for the Peeling Decoder

- An erasure-induced subgraph of $T(H)$ with no dangling checks is a stopping set for the peeling decoder (the decoder fails).
- Tanner graphs for sparse codes generally have fewer stopping sets.

$$
H=\left[\begin{array}{llll|lll}
0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]
$$

Quantum Code Review: Hypergraph Product Codes

Review: Families of Quantum Codes

- Recall that a quantum code of length N and dimension K is a subspace of a Hilbert space.
- Vectors are N-qubit states $\mid \psi)$ in \mathbf{C}^{N}.
- Errors on a state $\mid \psi)$ are described by N-qubit Pauli operators in $P_{N}=\{I, X, Z, Y\}^{\times N}$.
- Stabilizer Codes are the space of states left fixed by a subgroup of the Pauli group P_{N}.
- CSS Codes are stabilizer codes defined by commuting N-qubit X - and Z-Pauli operators.
- X - and Z-Pauli stabilizer generators define the rows of matrices H_{x} and H_{Z} (where $H_{x} H_{z}{ }^{\top}=0$).
- CSS Z and X error correction is modeled using classical codes $C_{X}=\operatorname{ker}\left(H_{X}\right)$ and $C_{Z}=\operatorname{ker}\left(H_{z}\right)$.
- Surface Codes are CSS codes defined from the cellulation of a surface.
- Hypergraph Product Codes are another type of CSS code.

Review: Pauli Errors for CSS Codes

- Pauli errors X_{i} and Z_{i} in P_{N} can be mapped onto binary strings e_{i} in $Z_{2}{ }^{N}$.

$$
E \quad=X_{1} Z_{1} X_{2} Z_{4} \quad \in \quad P_{4} \quad \Leftrightarrow \quad e_{X}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] \quad e_{Z}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

- Pauli error correction for a CSS code can be modeled as classical error correction using H_{x} or H_{z} (handling X and Z errors separately).
- The peeling decoder algorithm can be directly applied to CSS codes.

Hypergraph Product Codes: Definition

Theorem (Tillich-Zémor):

The Hypergraph Product (HGP) code of two classical codes $\mathrm{C}_{1}=\operatorname{ker}\left(\mathrm{H}_{1}\right)$ and $C_{2}=\operatorname{ker}\left(H_{2}\right)$ is the quantum code $C=\operatorname{CSS}\left(C_{X}, C_{Z}\right)$, where $C_{X}=\operatorname{ker}\left(H_{X}\right)$ and $C_{z}=\operatorname{ker}\left(H_{z}\right)$ have parity check matrices H_{x} and H_{z} defined from H_{1} and H_{2} as follows.

$$
\begin{aligned}
H_{X} & =\left[\begin{array}{l|l}
H_{1} \otimes I & I \otimes H_{2}^{T} \\
H_{Z} & =\left[I \otimes H_{2} \mid H_{1}^{T} \otimes I\right]
\end{array}\right.
\end{aligned}
$$

- The matrices have sizes $H_{1}=\left[r_{1} \times n_{1}\right], H_{2}=\left[r_{2} \times n_{2}\right]$, thus $H_{x}=\left[r_{1} n_{2} \times\left(n_{1} n_{2}+r_{1} r_{2}\right)\right], H_{z}=\left[r_{2} n_{1} \times\left(n_{1} n_{2}+r_{1} r_{2}\right)\right]$.
- C has length $N=n_{1} n_{2}+r_{1} r_{2}$ and dimension $K=N-\operatorname{rank}\left(H_{x}\right)-\operatorname{rank}\left(H_{z}\right)$
- C has minimum distance $\min \left(d_{1}, d_{2}\right)$, where d_{1} and d_{2} are the minimum distances of C_{1} and C_{2}.

Hypergraph Product Codes: Tanner Graph Structure

$[1100000001000001007$ 011000000010000010 101000000001000001 $000110000 \quad 100100000$ $H_{Z}=000011000010010000$ 000101000001001000 $000000110 \quad 000100100$ 000000011000010010 000000101000001001]
$\left[I \otimes H_{2} \mid H_{1}^{T} \otimes I\right]$

$$
H_{X}=\left[\begin{array}{ll}
100100000 & 101000000 \\
010010000 & 110000000 \\
001001000 & 011000000 \\
000100100 & 000101000 \\
000010010 & 000110000 \\
000001001 & 000011000 \\
100000100 & 000000101 \\
010000010 & 000000110 \\
001000001 & 000000011
\end{array}\right]
$$

$\left[H_{1} \otimes I \mid I \otimes H_{2}^{T}\right]$

Hypergraph Product Codes: Z-type Stabilizer Generators

Hypergraph Product Codes: X-type Stabilizer Generators

Aside: Toric Code HGP Picture versus Lattice Picture

Generalized Peeling Decoder for HGP Codes

Peeling Decoder Applied to HGP Codes

- NAIVE IDEA
- Does the basic peeling decoder perform well when applied to HGP codes?
- PROBLEM
- In practice, the peeling decoder applied to HGP codes performs poorly.
- The decoder often fails because of stopping sets unique to HGP codes.
- STRATEGY
- Modify the decoder to overcome the most common stopping sets.
- Generalized algorithm combines peeling with additional techniques.

Numerical Preview: Naive Peeling Decoder vs. ML Decoder

Gap between Peeling and ML decoders

CASE 1: Stabilizer Stopping Sets

The qubit support of an X-type stabilizer is a stopping set for the Tanner graph $T\left(H_{z}\right)$.

PROOF

\rightarrow Each X-type stabilizer commutes with Z-type stabilizer generators by construction ($H_{z} H_{x}^{\top}=0$).
\rightarrow The binary representation of an X-stabilizer is a codeword for the classical code $C=\operatorname{ker}\left(\mathrm{H}_{z}\right)$.
\rightarrow Each row of H_{Z} (Z generator) is adjacent to an even number of qubits in the support of the X-stabilizer.
\rightarrow The subgraph induced by this support contains no degree 1 checks (hence, it is a stopping set).
$H_{X}=\left[\begin{array}{|lll}{\left[\begin{array}{ll}100100000 & 101000000 \\ 010010000 & 110000000 \\ 001001000 & 011000000 \\ 000100100 & 000101000\end{array}\right.} \\ \left.\hline \begin{array}{lll}00000001010 & 000110000 \\ 100000100 & 000011000 \\ 010000010 & 000000101 \\ 001000001 & 000000011\end{array}\right]\end{array} e_{X}\right.$

$H_{Z} e_{X}=\left[\begin{array}{lll}110000000 & 100000100 \\ 011000000 & 010000010 \\ 101000000 & 001000001 \\ 000110000 & 100100000 \\ 000011000 & 010010000 \\ 000101000 & 001001000 \\ 000000110 & 000100100 \\ 000000011 & 000010010 \\ 000000101 & 000001001\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ \vdots\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$

Visualizing Stabilizer Stopping Sets in the Tanner Graph

$a_{2} a_{2}$	$b_{2} b_{1}$
$a_{3} a_{2}$	$b_{2} b_{2}$

$H_{Z}=000011000010010000 a_{2} b_{2}$
000101000 001001000
$000000110000100100 a_{3} b_{1}$ $000000011000010010 a_{3} b_{2}$ [000000101 000001001]

Algorithm: Pruned Peeling Decoder

1. Given erasure pattern ε, apply the standard peeling decoder until stuck.
2. Check whether ε contains the qubitsupport S of a stabilizer.

- If so, then S is a stabilizer stopping set.

3. Break S by removing some qubit from the erasure ε, shrinking the subgraph.

- This is possible since errors are corrected up to multiplication by a stabilizer.

4. Continue with the peeling decoder.

Restrictions on Searching for Stabilizer Stopping Sets

- Any product of M stabilizer generators defines a valid X-stabilizer.
- Naive peeling corresponds to $M=0$.
- Using only single X-stabilizer generators corresponds to $M=1$ (the rows of H_{X}).
- It is not easy to search for arbitrary products of stabilizer generators with large values of M.
- Numerically, we see almost no performance increase for large M.
- The gap is negligible between $M=1$ and $M=2$.

- We only consider up to $M=2$ in simulations.

Subgraph Induced by Pruned Peeling Decoder Stopping Sets

Subgraph for a stopping set of the 3×3 toric code shown on the standard lattice.

Example of the subgraph induced by a stopping set for a 1600-qubit HGP code.

CASE 2: Classical Stopping Sets

- The Tanner graph $T\left(H_{z}\right)$ contains copies of $T\left(H_{2}\right)$ and $T\left(H_{1}{ }^{T}\right)$ as subgraphs.
- Horizontal copies of $T\left(H_{2}\right)$.
- Vertical copies of $T\left(H_{1}^{T}\right)$.
- Stopping sets for $T\left(H_{2}\right)$ and $T\left(H_{1}{ }^{T}\right)$ lift to stopping sets of $T\left(H_{z}\right)$ on a row or column.
- These are horizontal and vertical classical stopping sets for $T\left(H_{z}\right)$ in the HGP code.

$$
H_{Z}=\left[I \otimes H_{2} \mid H_{1}^{T} \otimes I\right]
$$

Formalizing Horizontal and Vertical Stopping Sets

- The HGP Tanner graph $T\left(H_{z}\right)$ is the product of two bipartite classical Tanner graphs.
- $T\left(H_{1}\right)=\left(A_{1}\right.$ u $\left.B_{1}, E_{1}\right)$, where $A_{1}=$ bits, $B_{1}=$ checks.
- $T\left(H_{2}\right)=\left(A_{2}\right.$ u $\left.B_{2}, E_{2}\right)$, where $A_{2}=$ bits, $B_{2}=$ checks.
- Classical stopping sets in $T\left(H_{Z}\right)$ can be decomposed into classical components.
- Horizontal stopping sets have the form $\left\{a_{i}\right\} \times S_{A 2}$ in $A_{1} \times A_{2}$, where $S_{A_{2}}$ is a stopping set of $T\left(H_{2}\right)$.
- Vertical stopping sets have the form $S_{B 1} \times\left\{b_{j}\right\}$ in $B_{1} \times B_{2}$, where $S_{B 1}$ is a stopping set of $T\left(H_{1}{ }^{\top}\right)$.

Relative Size and Quantity of Classical Stopping Sets

$$
\begin{aligned}
& \begin{array}{l}
H_{1}=\left[r_{1} \times n_{1}\right] \Rightarrow H_{X}=\left[r_{1} n_{2} \times\left(n_{1} n_{2}+r_{1} r_{2}\right)\right] \\
H_{2}=\left[r_{2} \times n_{2}\right]
\end{array} \\
& \text { Classical code lengths } n_{1} \text { and } n_{2} \\
& \text { HGP code length } N
\end{aligned}
$$

- The sizes of H_{1} and H_{2} determine the length N of the HGP code.
- Assuming that $n_{1} \approx n_{2} \approx r_{1} \approx r_{2}$, the classical codes $C_{1}=\operatorname{ker}\left(H_{1}\right)$ and $C_{2}=\operatorname{ker}\left(H_{2}\right)$ have length $n_{1}=O(\sqrt{ } N)=n_{2}$ when compared with the length of the HGP code.
- For each classical stopping set of $T\left(H_{2}\right)$ and $T\left(H_{1}{ }^{\top}\right)$, the Tanner graph $T\left(H_{z}\right)$ contains on the order of $O(\sqrt{ } N)$ horizontal and vertical stopping sets.

Further Generalizing the Pruned Peeling Decoder

- OBSERVATION
- Numerically, the majority of Pruned Peeling Decoder stopping sets are classical.
- INTUITION
- The maximum likelihood decoder uses cubic complexity Gaussian elimination, which is too slow; but can it be applied efficiently to smaller classical stopping sets?
- CONSIDERATIONS
- If there exist multiple classical stopping sets, how do they interact with each other?
- Are classical stopping set solutions always consistent with the HGP solution?
- In combination with peeling, can these stopping sets always be eliminated?

The Vertical-Horizontal (VH) Graph

- Given an erasure pattern ε, define the vertical-horizontal graph as follows.
- Vertices are clusters of erased qubits in the same connected component and row/column of $T\left(\mathrm{H}_{z}\right)$.
- There exists an edge between clusters if there exists a check in $T\left(H_{z}\right)$ adjacent to a qubit in each.
- The VH graph is closely related to the erasure-induced subgraph of $T\left(H_{z}\right)$.
- Any two clusters share at most one check (edge).
- There does not exist an edge between two clusters of the same type (horizontal or vertical).
- In other words, the VH graph is bipartite.

Types of Cluster Configurations in the VH Graph

Isolated Cluster

Cluster Tree

Cluster Cycle

Algorithm: Vertical-Horizontal (VH) Decoder

1. Given erasure pattern ε, apply the prunedpeeling decoder until stuck in a stopping set.
2. Compute the VH-graph of ε.
3. If there exist isolated clusters, solve cluster using Gaussian elimination, then lift solution.
4. If there exist dangling clusters, search for a solution in sequence*, then continue peeling.

- The order and steps depend on the clusters.

5. If there exist no remaining dangling clusters nor checks, this is a VH decoder stopping set.

- For example, a cycle of clusters in the VH graph.

Peeling Dangling Clusters in Sequence

- An edge between two clusters in the VH graph defines a connecting check in $T\left(H_{z}\right)$.
- There are two possibilities for dangling clusters.
- A connecting check is free if it is the (weight 1) syndrome of a vector in this dangling cluster.
- Otherwise, the connecting check is frozen.
- Frozen dangling clusters can be solved like isolated clusters and removed from the graph.
- Solutions have the same contribution to this check.
- Free dangling clusters can be removed from the VH graph and solved after the other clusters.
- A cluster solution exists independent of this check.

PART 5

Performance of the Pruned Peeling and VH Decoders

Comparison of Performance with Gaussian (ML) Decoder

Performance Comparisons for Other Examples of HGP Codes

[1225,65] HGP Code

[1600,64] HGP Code

$$
\begin{aligned}
& \text { ■ pruned peeling decoder }(\mathrm{M}=0) \\
& \text { - pruned peeling decoder }(\mathrm{M}=1) \\
& \text { p pruned peeling decoder }(\mathrm{M}=2)
\end{aligned} \quad \mp \text { pruned peeling }(\mathrm{M}=2)+\mathrm{VH} \text { decoder }
$$

Computational Complexity of the Combined Decoder

The computational complexity of combined pruned peeling and VH decoders is dominated by Gaussian elimination applied to clusters.

- Clusters in the VH graph have size $O(\sqrt{ } N)$, where N is the HGP code length.
- On a single cluster, cubic-complexity Gaussian decoder contributes $O\left(N^{1.5}\right)$.
- The number of possible clusters grows as $O(\sqrt{ } N)$.
- Across all clusters, the VH-decoder has complexity $O\left(N^{2}\right)$.
- With a probabilistic implementation of the Gaussian decoder, this can be further reduced to $O\left(N^{1.5}\right)$ in total.

Thank you!

