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Abstract

My doctoral research is focused on the tabulation and classification of the knot theoretic
structures known as tangles. Tangles can be understood most generally as the building
blocks of mathematical knots. The enumeration of knots has been the quintessential goal
of knot theory since its inception, leading some to describe tangle tabulation as “the most
important missing infrastructure project” in the field [2]. My doctoral research has two
principal goals. First, I am addressing this deficiency by creating an exhaustive database of
2-string tangles and their properties. Second, I am developing a computational algorithm
to classify the structure of a tangle diagram through a decomposition into subtangles. This
research statement provides a brief overview of my achievements on these projects.

In addition to my research as a doctoral candidate in mathematics, I have also partici-
pated in multiple non-academic research internships during the summers of 2019 and 2020.
These interdisciplinary internships have greatly complemented my studies in pure mathe-
matics with applied experience in data science and machine learning. Brief descriptions of
these projects are included following the discussion of my dissertation research.

Introduction

Background
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A tangle is a three dimensional object
consisting of a ball embedded with multiple
entwined strings (Figure [1)). The well known
knot theorist J. H. Conway first introduced
tangles as a way to tabulate knots [9]. He
showed that it was possible to describe any
knot with up to 11 crossings in terms of one
of eight basic planar graphs, work that was (
later improved by Caudron [4]. Tabulation of

knots and links is one of the classical goals Figure 1: Example of a tangle diagram, gener-
of knot theory, with many mathematicians ated using KnotPlot [27], and two different di-
contributing to this endeavor over the years agram notations: the Dowker code (above) and
(14}, 13, 17, 22, 19} 130]. an algebraic construction formula (below).



By contrast, tabulation of tangles has been less thoroughly researched, although progress
has been made in special cases [9 20, 25] and for small crossing numbers when allowing
the boundary to move [29, [I8]. Depending on the application, tangles can be studied either
allowing the endpoints to move on the boundary sphere or requiring them to be fixed. My
dissertation research is concerned with the study of 2-string tangles of both types. Motivated
by Conway’s work, I am continuing the project of tangle tabulation using a graph theoretic
approach to decompose tangle diagrams into subtangles. By enumerating these decomposi-
tions, I can generate an exhaustive list of tangles up to a specified crossing number.

While tangles are three dimensional objects, they are primarily studied using two di-
mensional tangle diagrams. A diagram may be uniquely encoded as a sequence of numbers
referred to as a diagram notation, such as the Dowker code [14] (Figure [1)). There are
many such notations, but each allows the topology of a tangle diagram to be studied using
combinatorics and computational search algorithms. I have developed my own subtangle
planar diagram notation to decompose a diagram into subtangles based on the idea that
large tangles with a complicated structure can be described using small tangles with a sim-
ple structure. My notation is a generalization of Conway notation and a notation introduced
by Ewing and Millett [16], which describes a similar decomposition of a knot diagram into
crossings. I have successfully used my new notation to classify and tabulate tangle diagrams
and I am now focused on consolidating my results in a web-accessible database [6].

Broader Impact

Within the field of topology in general and knot theory in particular, the ability to
demonstrate major results using examples is critical to understanding the subject. As any
textbook in the discipline shows [26, [, 10], figures, diagrams, and tables of knots are ubig-
uitous among publications in knot theory. As the building blocks of knots, topologist Dror
Bar-Natan has proclaimed the importance of tangle tabulation on the basis that tangles are
precisely what the knot theorist must study [2]. My contribution to this growing body of
work is an organized database of tangle examples. Beyond pure knot theory, tangles also
play a prominent role in mathematical biology, where they have been used to model protein
folding and to solve tangle equations modeling DNA bound by protein [I5] 1T} 3, 12]. By
developing this database, I am creating a resource that is available to the broader scientific
community.

Overview of Doctoral Research

To expand upon my research objectives and accomplishments, the discussion of my doc-
toral research is divided into the following five sections.

1. Families of Tangles: Broadly speaking, 2-string tangles can be divided into families
based on their structure: integer, rational, Montesinos, algebraic, and non-algebraic. I
begin with a brief description of these families.

2. Classification Algorithm: Using graph theory, I have developed a subtangle planar
diagram notation that describes a tangle diagram in terms of a decomposition into sub-
tangles, a notation which makes it easy to identify the family of a diagram. Furthermore,



I have developed and implemented an algorithm in C/C++ to compute this notation for
a given tangle diagram. This section outlines the basic concept of my algorithm.

3. Tangle Tabulation: This section discusses a computational method for tabulating a list
of tangles up to fixed crossing number. The method is based on exhaustively generating
diagram notations and eliminating known redundancies.

4. Database Development: The combined result of my classification and tabulation pro-
grams, | have created a working prototype of a web-accessible database for 2-string tangles

using SQL, HTML, and PHP (web address included in references [6]). The prototype pro-
vides an early illustration of my goals for this resource for some special families of tangles.

5. Future Work: While the 2-strings tangles database is the culmination of my gradu-
ate research, I have several ideas for new directions to expand upon as a postdoctoral
researcher. I conclude with a discussion of some of these plans.

Doctoral Research

Families of 2-String Tangles

There are six families of 2-string tangles, with examples for the first five families shown
in Figure 2] Integer tangles are the simplest family to understand, and consist purely of a
horizontal sequence of twists. Figure [2a] shows an example of an 8-crossing integer tangle,
which is denoted by the fraction %. More generally, a horizontal or vertical sequence of twists
is referred to as a horizontal or vertical tangle. These tangles are denoted by the fractions 7
and %, respectively, where |n| is the number of crossings and the sign of n matches the slope
of the over-strand.

Figures[3aland [3b| show how two tangles can be stacked together like blocks to build more

complicated diagrams. The operation of joining two tangles horizontally is called tangle sum,

(a) Integer (b) Rational (c) Montesinos  (d) Gen. Montesinos (e) Algebraic
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Figure 2: Examples of tangle diagrams for several families of 2-string tangles, organized by increas-
ing generalizability. The hierarchy of those shown is: {Integer} C {Rational} C {Montesinos} C
{Generalized Montesinos} C {Algebraic}. Since each of these examples is an algebraic tangle, the
tangles above can be denoted with a compact algebraic construction formula.



(a) Tangle Sum (b) Tangle Product (c) Rational tangle with twist vector (5,4,3,2,1)
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Figure 3: Tangles can be stacked together to build larger tangles, operations referred to as tangle
sum (horizontal join) and tangle product (vertical join). Rational tangles are built using sums and
products of horizontal and vertical tangles. The construction of a rational tangle is summarized

by a twist vector (nq,- - ,ny) that defines a continued fraction ny + ﬁ = g. This fraction
S

defines a bijection between rational tangles and the extended rational numbers [9] 20].

while joining two tangles vertically is called tangle product. A tangle is rational if it can be
constructed using sums with horizontal tangles and products with vertical tangles. A special
feature of rational tangles is that all twists can be shuffled to the right and bottom sides of
the diagram, giving a preferred construction like the ones shown in Figures 2bland [Bd From
this preferred construction, a rational tangle can be described by a sequence of numbers
(ny,---,ny) called a twist vector which denotes alternating right and bottom twists. As
with integer tangles, twists may be either positive or negative depending on the slope of the
over-strand, but a rational tangle diagram will not be minimal unless all twists have the
same sign. The twist vector defines a continued fraction that simplifies to a unique extended
rational number § that is used to denote the rational tangle (see Figure .

Rational tangles have been widely studied because of their particularly well-behaved
structure. Algebraic tangles are a generalization of rational tangles which have not yet
been classified uniquely. A tangle is algebraic if it can be constructed using any combina-
tion of sums and products of rational tangles, yielding a diagram described by a compact
construction formula like the ones shown in Figure 2] While a preferred diagram for generic
algebraic tangles is not yet known, such a description does exist for some special cases [28].
A Montesinos tangle is an algebraic tangle constructed using only tangle sums, as shown
in Figure 2d A generalized Montesinos tangle consists of a Montesinos tangle that also has
external right and bottom twists. Unlike generic algebraic tangles, generalized Montesinos
tangles do admit a preferred construction [24) 25].

If one allows the boundary of a tangle to move, the endpoints of the strands on the surface
of the ball can unwind. Under this definition of tangle, all generalized Montesinos tangles
are equivalent to a Montesinos tangle. In particular, all rational tangles are equivalent to
a O-crossing tangle. I am interested in the study of tangles both with and without a fixed
boundary. For fixed boundary tangles, this external twisting can be described using the
same twist vector notation used for rational tangles. A generalized Montesinos tangle is
often denoted with a core Montesinos tangle and a twist vector (Figure .
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Figure 4: The first 10 constellation graphs showing possible non-algebraic tangle diagram config-
urations. These graphs can be used to build diagrams for non-algebraic tangles by replacing the
vertices with algebraic subtangles (Figure . The special vertex marked oo denotes the four end-
points of a tangle, where we imagine collapsing these to a single point. In combination with tangle
sums and products, all non-algebraic tangle diagrams with at most 9 crossings can be described
using one of these constellations. Constellations are closely related to Conway’s graphs [9].

The five tangles shown in Figure[2]are all examples of algebraic tangles. A non-algebraic
tangle is one that cannot be constructed using only sums and products of rational tangles,
which makes them difficult to describe in general. Even though they cannot be constructed
using only tangle algebra, non-algebraic tangle diagrams can still be decomposed into certain
configurations of algebraic subtangles. By studying how to decompose tangle diagrams into
subtangles, I have discovered that configurations for non-algebraic diagrams can be modeled
using certain marked 4-valent planar graphs, structures which I refer to as constellations in
my research. By comparison with existing tables of planar graphs [23], I have identified up
to isomorphism 10 distinct constellations (Figure [4)) which can be used to classify all non-
algebraic tangle diagrams with at most 9 crossings. For example, the non-algebraic tangle
diagram of Figure [5c| can be decomposed into into five algebraic subtangles using the first
constellation of Figure [4]

Constellations are a generalization of the planar graphs Conway used to tabulate knots
[9], and Conway’s graphs can be recovered from this list of constellations by closing tangle di-
agrams into knots. The Conway notation for a knot describes how tangles can be substituted
for the vertices in a graph to build a diagram. Using the same idea, I have extended this to
tangles using a similar constellation notation (Figure . This graph theoretic description
of tangle diagrams plays a major role in my research.



(a) Subtangle Planar Diagram Code (c) Non-Algebraic Diagram Decomposition

2/3) ONW 2NW 5NW 4SE (P:0)
3/2)%(2/1) 1NE ONE 3SW 5NE (P:0)
4/1) 0SE 4NW 5SE 2SE (P:0)
1/3) 3NE 0SW 1SW 5SW (P:1)
3/7) 1SE 2SW 3SE 4SW (P:1)

(b) Constellation Notation

Figure 5: Example of a non-algebraic tangle diagram decomposed into algebraic subtangles. The
configuration of subtangles shown in [5c| matches the first constellation graph of Figure 4l In the
corresponding subtangle planar diagram notation , each row denotes an algebraic subtangle
and its connections to other subtangles. (See [6] for additional details about this notation). The
connection information describes the adjacency list of the graph for this subtangle decomposition.
In combination with tangle sums and products, constellation notation is a compact way to
represent a non-algebraic diagram by slotting in subtangles for the vertices in a constellation graph.

Classification Algorithm

The construction of an algebraic tangle diagram is explicitly described by a sequence of
sums and products of rational numbers, such as those shown in Figure [2| which corresponds
to a certain configuration of rational subtangles. Hence, one way to distinguish algebraic
and non-algebraic diagrams is by finding and analyzing such a subtangle decomposition. The
original diagram is algebraic if and only if this configuration can be expressed with tangle
sums and tangle products, which defines the corresponding sequence of rational numbers. For
algebraic diagrams, it is easy to identify the tangle family based on this sequence. Therefore,
a tangle diagram can be classified by computing a subtangle decomposition.

By generalizing the Ewing and Millett notation [I6], which decomposes a diagram into
crossings, I have developed my own subtangle planar diagram notation which describes an
explicit configuration of subtangles in terms of the adjacency list for a graph. This notation is
not unique in general since the same diagram can be modeled using a different combination
and configuration of subtangles. However, this notation will be unique if decomposing a
diagram into maximal algebraic subtangles. Any non-maximal subtangle decomposition
can be refined by joining together neighboring subtangles that share algebraic connections
(Figures [3al and , until a decomposition into maximal algebraic subtangles is obtained.

A major result in my research is the implementation of an algorithm in C/C++ [5] to
find this decomposition by computing the corresponding subtangle planar diagram code. Be-
ginning from the Ewing-Millet notation, my algorithm converts this into a decomposition of
1-crossing subtangles. It then iteratively refines this decomposition by searching for subtan-
gles that can be joined together with sums or products, and terminates when no remaining
subtangles share an algebraic connection. The result is either the construction formula for
an algebraic tangle, or a list of connected algebraic subtangles (Figure [5)).
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Figure 6: Table of 2-string tangles with 5 crossings, excluding mirror images. Blue denotes
horizontal and vertical tangles, red denotes rational tangles, and green denotes Montesinos tangles.
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Tangle Tabulation

In addition to classifying tangle diagrams, my research is concerned with the tabulation
of tangles. One way to enumerate an exhaustive list of tangles is by generating all possible
diagram notations, a method employed by Dowker and Thistlewaite to tabulate knots [14].
This technique for tabulating tangles based on a list of Dowker codes has been used in
previous student research projects [21, [I1] that T have now taken over and expanded upon
in my graduate studies. However, the same tangle may be realized by multiple diagrams
and hence this method is known to produce many redundancies. While the resulting list
of tangles will be exhaustive, identifying and eliminating redundant tangle diagrams is a
challenge for this method of tabulation.

My classification algorithm provides a partial solution to this challenge. Unlike rational
and Montesinos tangles, generic tangles are not known to have a preferred diagram. How-
ever, every tangle diagram can be decomposed into rational subtangles. Therefore, we can
eliminate many redundancies by restricting to diagrams where all rational subtangles satisfy
this preferred form. By converting the list of generated Dowker codes into subtangle pla-
nar diagram notation, the classification algorithm can identify many redundant diagrams by
computing this decomposition into rational subtangles.

I have successfully used this technique to catalog small tangles. For example, every 2-
string tangle with fewer than 6 crossings is either integer, rational, or Montesinos, and hence
admits a preferred diagram. Figure [6] shows a table of these diagrams for all 5-crossing
tangles, excluding mirror images. As crossing number increases, the number of generic
algebraic and non-algebraic diagrams grows exponentially, but this technique can still be
used to eliminate many redundancies. For tangles with fewer than 10 crossings, the number
of remaining diagrams is small enough that we may be able to leverage other methods such
as computing tangle invariants to determine potential redundancies for further investigation.



Verification of these results is also an important aspect of this research. The tangles gen-
erated using this method are consistent with existing lists of tangles such as [20, 25, 1§]. A
second method of verifying this output is a bottom-up approach based on generating all pre-
ferred diagrams for special families of tangles. By enumerating an exhaustive list of diagram
notations for rational, Montesinos, and generalized Montesinos tangles, I have confirmed
that my tabulation method does not miss any tangles in these special families. In the future,
I will extend this comparison technique to non-algebraic diagrams using constellations.

Database Development

To make my results accessible to the research community at large, I am now developing an
online database of 2-string tangles using SQL, PHP, and HTML. By merging my classification
and tabulation algorithms, I have written a program in C/C++ that outputs an exhaustive
list of notations for tangle diagrams up to a fixed crossing number, including the subtangle
decomposition. As a proof of concept, I have created a working prototype of my planned
database to demonstrate the functionality of this resource for the special families of algebraic
tangles [6]. The next step is to expand this prototype into a full database with the output
from the tabulation project.

Some planned features currently under development include: populating the database
with tangles up through 9 crossings at minimum; incorporating computer generated figures
using KnotPlot [27]; creating a details page for each tangle including notations, construction
information, and known invariants; creating an intuitive search form for generating sorted
lists of tangles. I am developing this database concurrently with writing my dissertation and
will continue to implement features as I make progress.

Future Work

As a postdoctoral researcher, I am interested in translating my skills to new projects. In
addition, I have a number of ideas for expanding on my work with tangles. The database I
have been developing can be applied more broadly to computational questions in knot theory.
Using closures, I can convert the output from my database into a list of knots and links,
which can be used to calculate distance tables between knots and to solve tangle equations.
Furthermore, subtangle decompositions can also be applied to knot and link diagrams, and I
would like to leverage such a decomposition to compute invariants. More generally, I would
like to explore how this database can be applied to existing questions in knot theory.

My second idea for a new research direction is motivated by the many applications of
tangles to mathematical biology. It is often challenging for scientists to identify the structure
of knotted DNA given the difficulty in obtaining detailed images. Image classification is
a natural question for computer vision, a topic which I have become interested in through
recent internship experiences. Distinguishing between pattern and noise often requires clever
data engineering. Given my expertise with tangles and my computational experience in
machine learning, this connection to mathematical biology is an excellent opportunity for
interdisciplinary collaborations.



Internship Research Experiences

NSF Research Internship with USACE Geospatial Research Laboratory

During the summer of 2020, I participated in a 10-week research internship with the
U.S. Army Corps of Engineers’ Geospatial Research Laboratory (GRL) through the NSF
Mathematical Sciences Graduate Internship Program. The objective of this project was to
develop a method for clustering time series data with multi-modal attributes that could take
into account similarity with respect to different types of measurements, such as duration, time
of day, GPS location, or speed. Working under the direction of Charlotte Ellison, a senior
researcher at GRL, I pursued a graph theoretic approach to this question based on a multi-
weighted graph model. By leveraging this model to represent multi-modal data, I developed
a new graph-based algorithm in Python for clustering data based on a variety of different
attributes. This research has been submitted for publication at the 2021 IEEE International
Conference on Data Engineering under the title “Multi-modal community detection using
multi-weighted graphs” [§].

By quantifying the interaction between pairs of objects, weighted graphs are a flexible tool
for identifying patterns such as clusters in data. However, for multi-modal data in particular,
different attributes may define different weighted graphs. While each of these graphs models
a different attribute, they are defined on the same set of vertices. Thus, we may combine these
into a single multi-weighted graph by representing edge weights as vectors. Leveraging this
model requires adapting graph-analysis techniques such as community detection (identifying
clusters of vertices) to multi-weighted graphs. We developed two novel clustering methods,
multi-clustering and meta-clustering, which search for similarity between vertices using a
balance of all attributes. Multi-clustering looks at non-empty intersections of clusters from
different attribute graphs and is effective when there are few attributes. Meta-clustering is
a more robust approach that considers how clusters across all attribute graphs overlap.

Machine Learning Internship with Japanese AI-Startup UsideU

During the summer of 2019, I participated in a 4-week internship with a Japanese com-
pany through ICC Consultant’s Internship in Japan program. I interned with Tokyo-based
startup UsideU, a tech company with a focus on artificial intelligence, on a project in ex-
ploratory data science. Working closely with the Chief AI Officer Dr. Alireza Goudarzi,
the focus of my project was using deep learning to automate the process of pattern analysis
in this company’s development of a fitness application. Part of this application involved
recording a video of a user exercising and then using computer vision techniques to assess
the quality of the performance. The company’s existing method for pose-estimation relied
on a rule-based system created by fitness experts to determine the position of a user’s body,
a process we were able to streamline using machine learning.

The result of my project was the creation of a pipeline using Python to automate the most
difficult steps in the exercise evaluation process. From a recorded video of a user working
through a fitness program, we leveraged computer vision to predict the spatial and angular
positions of the most important joins in the body. We then created time series data from
each video frame of the recorded exercise which uniquely characterizes a user’s performance.



Clustering methods were used to identify distinct positions with an exercise, while PCA and
linear regression were used to further analyze patterns in the data representative of a given
activity. The overall quality of an exercise is determined by a neural network trained with
the data from professional fitness trainers. After the conclusion of my project, I presented my
research in a poster session at the Asian Conference on Machine Learning 2019 in Nagoya,
Japan [7].

Data Science Internship with American Utilities Company Ameren

Also during the summer of 2019, I participated in a 6-week internship with the utilities
company Ameren through the University of Illinois Urbana-Champaign’s PI4-IMA Summer
Internship Program. I worked as a member of Ameren’s interdisciplinary Data Science Team
under the direction of senior researcher Dr. Gui Maia on a project applying computer vision
to parse important information from PDF documents. The purpose of this project was to
automate the process of recording a large backlog of scanned work-orders into an electronic
database, a task that was currently being done manually. Using Python, I developed an
algorithm to search for and extract key strings of text. This algorithm was able to automate
a portion of Ameren’s existing record keeping process.
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