Constellations and an Algebraic Planar Diagram Code

Nicholas Connolly

Mathematics Department, University of Iowa

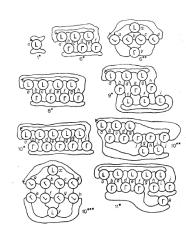
December 12, 2019

Table of Contents

- Background
 - Introduction
 - Tangle Diagram Notations
 - Tangle Classifications
- 2 Describing Diagrams with Graphs
 - Building on Conway
 - Diagrams and Graphs
 - Distinguishing Algebraic and Non-Algebraic Diagrams
 - Algebraic Planar Diagram Code
- 3 Constellations
 - Properties of Constellations
 - Constellation Notation

Connection to Knot Theory: Conway's Tabulation¹

- Conway introduced tangles as a way to tabulate knots.
- Tangles are regarded as portions of knot diagrams.
 - planar polyhedra describe diagrams
 - vertices represent tangles
- All knots up to 11 crossings can be described this way.
 - basic polyhedra (right)
 - algebraic tangle vertices
- Improved on by Caudron.



¹J. H. Conway. An enumeration of knots and lints, and some of their algebraic properties. In *Computational Problems in Abstract Algebra (Proc. Conf., Oxford 1967)*, pages 329-358. Pergamon, Oxford, 1970 → ₹ → ₹

Tangle Diagrams and Parity

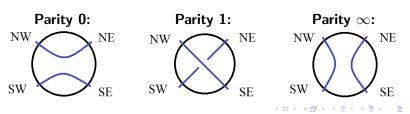
Definition

A **2-string tangle** consists of ball with two entwined strings embedded inside (their endpoints lie on the surface).

A tangle diagram is a 2-dimensional projection of a tangle.

- Crossings distinguish over-strand and under-strand.
- Endpoints are identified by NW, NE, SE, SW (2-string).

A 2-string tangle has three possible **parities**.

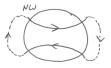


Tangle Properties Similar to Knots

Definition

An **orientation** on a tangle is a choice of direction for each string.

Parity 0:



Parity 1:

Parity ∞ :

By convention, each parity type has a standard orientation.

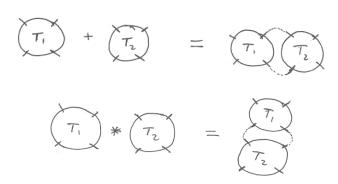
Definition

Two tangles are said to be **equivalent** if there exists an ambient isotopy between them which leaves the boundary of the ball fixed. Equivalent diagrams are related by **Reidemeister moves**.

Sum and Product of 2-String Tangles

Definition

A **sum** of tangles $T_1 + T_2$ joins the tangles horizontally as shown. A **product** of tangles $T_1 * T_2$ joins the tangles vertically as shown.



Notation Examples

Dowker Code:

$$-4 \mid -6 \quad -2$$

Gauss Code:

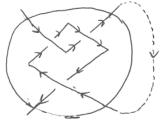
$$|)a1+b2+(|)a3+b1+a2+b3+(|$$

Planar Diagram Code:

Coloring Matrix:

$$\begin{bmatrix} 1 & -2 & 0 & 1 & 0 \\ -2 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & -2 & 1 \end{bmatrix}$$

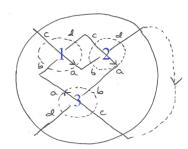
Example:



Planar Diagram Code

Algorithm:

Example:

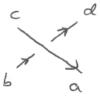


Planar Diagram Code: Labeling Convention

Crossing Labeling Convention:

- Each crossing has four corners.
- Label outward pointing overstrand a.
- Label remaining corners clockwise by b, c, d.

Corner Connections: Example:



Planar Diagram Code: Labeling Convention

Crossing Labeling Convention:

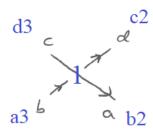
- Each crossing has four corners.
- Label outward pointing overstrand a.
- Label remaining corners clockwise by b, c, d.

Corner Connections:

- Index each crossing.
- Record crossing sign.
- For each corner, record connected crossing.

$$+$$
 $b2$ $a3$ $d3$ $c2$ d

Example:

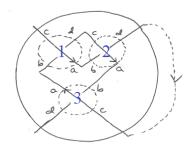


Planar Diagram Code: Algorithm

Algorithm:

- Start at NW corner.
- Index crossings with subsequent integers.
- Label corners of each crossing a, b, c, d.
- Record corner connections for each crossing.
- List rows with corner connection information.

Example:



Hierarchy of 2-String Tangle Types

```
{arbitrary 2-string tangles}
       {algebraic tangles}
{generalized Montesinos tangles}
      {Montesinos tangles}
       {rational tangles}
        {integer tangles}
```

2-String Tangle Types by Increasing Complexity

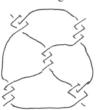
Rational

Montesinos

Generalized Montesinos

Algebraic

Non-Algebraic



Integer Tangles

Definition

An **integer tangle** is constructed from any sequence of horizontal or vertical twists.

Example: 3/1

horizontal

Example: 1/3

vertical

Rational Tangles

Definition

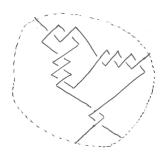
A **rational tangle** is constructed from an alternating sequence of horizontal and vertical twists, denoted by a **twist vector**.

Example: rational tangle with canonical* diagram

- 2 horizontal twists
- 3 vertical twists
- 4 horizontal twists
- 2 vertical twists
- 0 horizontal twists

Twist Vector:

(2, 3, 4, 2, 0)



Rational Tangles: Bijection with Extended Rationals

Theorem

Rational tangles (up to equivalence with canonical form) are in bijection with the extended rational numbers.²

- Every rational tangle can be placed in canonical form.
- Every canonical form can be described with a twist vector.
- Each twist vector defines a continued fraction in $\mathbb{Q} \cup \{\infty\}$.

$$(a_1, a_2, \cdots, a_{n-1}, a_n)$$
 \leftrightarrow $a_n + \frac{1}{a_{n-1} + \cdots + \frac{1}{a_2 + \frac{1}{a_1}}}$

• This fraction is a rational tangle invariant.

² J. H. Conway. An enumeration of knots and lints, and some of their algebraic properties. In *Computational Problems in Abstract Algebra (Proc. Conf., Oxford 1967)*, pages 329-358. Pergamon, Oxford, 1970

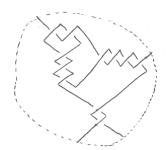
Rational Tangles: Example

Twist Vector:

Fraction:

$$0 + \frac{1}{2 + \frac{1}{4 + \frac{1}{3 + \frac{1}{8}}}} = \frac{30}{67}$$

Diagram:

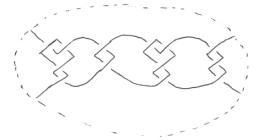


Montesinos Tangles

Definition

A tangle is **Montesinos** if it can be expressed as a horizontal or vertical joining of rational tangles.

Example: (2/5) + (1/2) + (2/5) + (1/3)



Generalized Montesinos Tangles

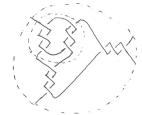
Definition

A **generalized Montesinos tangle** consists of a core Montesinos subtangle with external twisting.

Example: Montesinos Core

$$\left(\frac{1}{-3}\right) + \left(\frac{1}{-3}\right)$$

Example: Endpoint Twisting



$$\left(\frac{1}{-3}\right) + \left(\frac{1}{-3}\right) \circ \left(-3, -3, 0\right)$$

Database of 2-String Tangles

Prototype of database of 2-string tangles:

- http://www.nick-connolly.com/tangles
- rational tangles up to 9 crossings
- generalized Montesinos tangles up to 11 crossings

Algebraic Tangles

Definition

A tangle is **algebraic** if it can be expressed with a finite combination of sums and products of rational tangles.

Example:

$$((1/3)+(1/2))*((1/2)+(1/3))$$

non-Montesinos algebraic tangle



Non-Algebraic Tangles

Definition

A tangle is **non-algebraic** if it cannot be expressed in terms of a finite combination of sums and products of rational tangles.

Example:

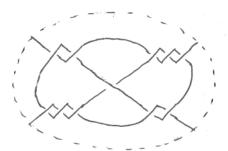


Table of Contents

- Background
 - Introduction
 - Tangle Diagram Notations
 - Tangle Classifications
- Describing Diagrams with Graphs
 - Building on Conway
 - Diagrams and Graphs
 - Distinguishing Algebraic and Non-Algebraic Diagrams
 - Algebraic Planar Diagram Code
- Constellations
 - Properties of Constellations
 - Constellation Notation

Building on Conway Diagrams and Graphs Distinguishing Algebraic and Non-Algebraic Diagrams Algebraic Planar Diagram Code

Recall: Conway's Tabulation³



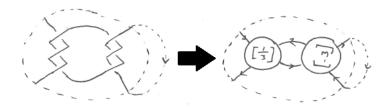
³ J. H. Conway. An enumeration of knots and lints, and some of their algebraic properties. In *Computational Problems in Abstract Algebra (Proc. Conf., Oxford 1967)*, pages 329-358. Pergamon, Oxford, 1970

Adapting Conway's Idea

Observations:

- Rational tangles are well-behaved and easy to describe.
- Rational tangles "live inside" non-rational tangles.

Idea: Can we use rational subtangles rather than crossings?

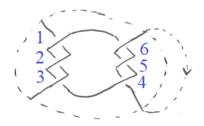


Recall: Planar Diagram Code

The PD code describes a graph using crossing connections:

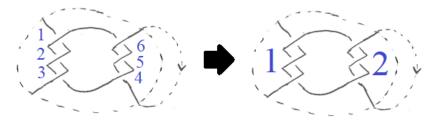
- vertices are crossings
- edges are connecting strands
- crossing sign is tracked

Example: (1/3) + (1/3)



+	2 <i>b</i>	3 <i>a</i>	6 <i>d</i>	2 <i>c</i>
+	3 <i>b</i>	1 <i>a</i>	1 <i>d</i>	3 <i>c</i>
+	1 <i>b</i>	2 <i>a</i>	2 <i>d</i>	4 <i>c</i>
+	5 <i>b</i>	6 <i>a</i>	3 <i>d</i>	5 <i>c</i>
+	6 <i>b</i>	4 <i>a</i>	4 <i>d</i>	6 <i>c</i>
+	4 <i>b</i>	5 <i>a</i>	5 <i>d</i>	1 <i>c</i>

Generalize to a Subtangle Diagram Code?



Original PD Code

4*b*

5*a* 5*d*

Subtangle Diagram Code?

How to Make Rigorous?

Goal: Define a PD notation using substangles

Considerations:

- What kind of subtangles?
- How to label corners?
- How to handle endpoints?
- How to deal with equivalent subtangles?
- How to leverage graph theory?
- How to compute notation?
- How to implement with programs?

Other Goal: Distinguish non-algebraic tangles with notation

Subtangle Choices

Subtangle algebraic crossings integer rational Diagram Graph

The Graph of a Knot Diagram

Any knot diagram can be turned into a graph.

- The crossings become vertices.
- The strands between crossings become edges.

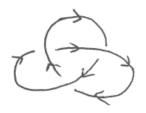
Example: Trefoil Diagram

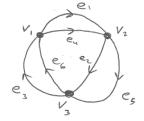
Example: Trefoil Graph

Knot Orientation and Eulerian Circuits

Observe that a choice of orientation on a knot diagram induces an Eulerian circuit on the corresponding knot graph.

Example: Oriented Trefoil





$$s = [v_1, e_1, v_2, e_2, v_3, e_3, v_1, e_4, v_2, e_5, v_3, e_6, v_1]$$

Properties of a Knot Diagram Graph

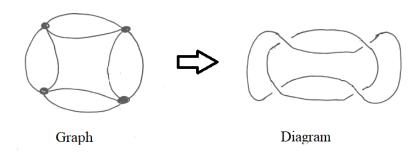
Properties:

- The graph is connected.
- The graph is planar.
- The graph is 4-regular (each vertex has degree 4).
- The graph contains an Eulerian circuit.

Graph:

Reverse Question: Building Knot Diagrams from Graphs

Any connected, planar, 4-regular graph can be realized as a link.

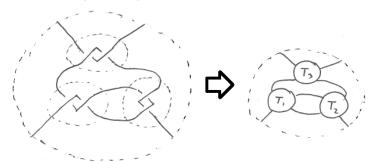


A graph with n vertices can be realized by 2^n diagrams.

Describing Tangles with Graphs

Replacing subtangles with vertices gives another graph theoretic description of a diagram.

Example: $T_3 * (T_1 + T_2)$

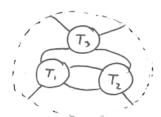


Subtangle Graphs

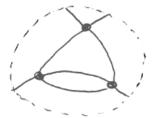
We can also model these subtangle combinations with a graph.

- The subtangles becomes vertices.
- The strands between subtangles become edges.

Example: Tangle Diagram



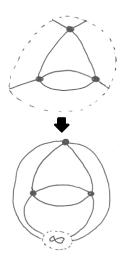
Example: Subtangle "Graph"



Properties of a Subtangle Diagram Graph

Properties:

- The graph is connected.
- The graph is planar.
- The graph is 4-regular (each vertex has degree 4).
- The graph contains an **Eulerian circuit**.
- The endpoints form an extra **vertex at** ∞ .

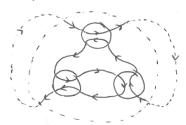


Eulerian Circuits and Subtangle Parities

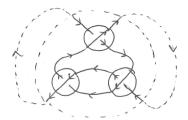
Theorem

A choice of Eulerian circuit in a subtangle diagram graph uniquely induces a parity on each subtangle component.

Example: Parities $0, 0, \infty$



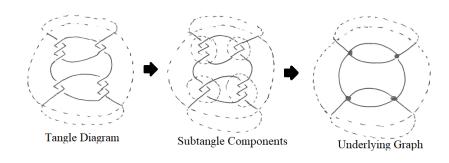
Example: Parities 1, 1, 1



Finding possible parities is equivalent to finding Eulerian circuits.

Reversing the Question

Every tangle diagram with subtangle components identified defines a graph with these properties.



Does every graph with these properties define a diagram?

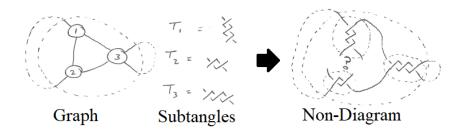
Building a Diagram from a Graph

Given a graph with these properties, we can build up a configuration of subtangles. Filling these in gives a tangle diagram.



Necessary Assumptions

Notice that we cannot connect subtangles without 4-regularity.



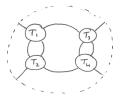
Can we add more restrictions to distinguish types of diagrams?

Algebraic Diagrams

Definition

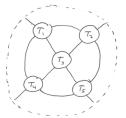
A subtangle diagram is **algebraic** if it can be built from sums and products of subtangles.

Example: Algebraic



$$(T_1 * T_2) + (T_3 * T_4)$$

Example: Non-Algebraic

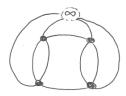


Tangle sums and products always join two endpoints at a time.

Graphs of Algebraic Diagrams

In the corresponding subtangle graph, there are two edges between added/multiplied subtangles (it's a **multi-graph**).

Example: Algebraic



$$(T_1 * T_2) + (T_3 * T_4)$$

Graph has multi-edges

Example: Non-Algebraic

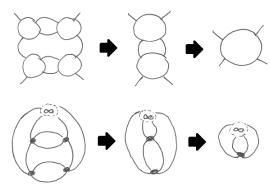
Graph is simple

The Maximal Algebraic Subtangle Graph

Definition

The maximal algebraic subtangle graph of a tangle diagram is obtained by collapsing together any vertices with two connections.

Example:

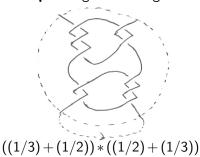


Distinguishing Algebraic and Non-Algebraic Diagrams

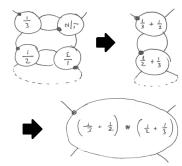
Theorem

A tangle is algebraic if and only if its maximal algebraic subtangle graph consists of a single subgtangle vertex.

Example: Algebraic Tangle



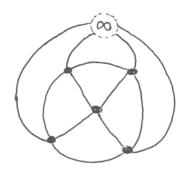
MASG:

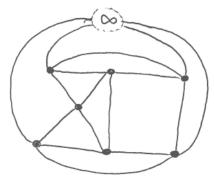


When is a Diagram Non-Algebraic?

Theorem

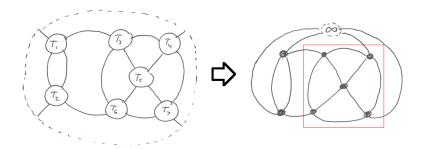
A simple subtangle graph must be non-algebraic.





Non-Algebraic Condition: Sufficient but not Necessary

Simple subtangle graphs must be non-algebraic; the converse does **not** hold. A non-algebraic subtangle graph isn't always simple.

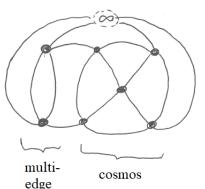


However, this graph contains a particular simple **subgraph**.

Constellations and Non-Algebraic Subtangle Graphs

Theorem

A subtangle graph is non-algebraic if and only if it contains a subgraph which is isomorphic to the cosmos of some constellation.



Building on Conway Diagrams and Graphs Distinguishing Algebraic and Non-Algebraic Diagram Algebraic Planar Diagram Code

Generalizing the Planar Diagram Code

Standard Planar Diagram Code:

- Rows represent crossings.
- Precede row with crossing sign.
- Connection labels follow outward-pointing overstrand.

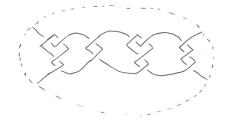
Integer/Rational/Algebraic Planar Diagram Code:

- Rows represent subtangles.
- Precede row with subtangle fraction/construction.
- Connection labels follow compass directions.
- Succeed row with subtangle parity.

$$(2/3) + (1/3)$$
 2 NE 3 NW 6 SW 2 SE (P: 0')

Standard Planar Diagram Code: Example

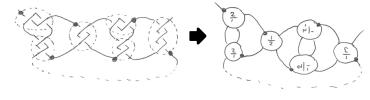
$$(2/5) + (1/2) + (2/5) + (1/3)$$



+	6 <i>d</i>	9 <i>a</i>	2 <i>d</i>	2 <i>c</i>
+	3 <i>b</i>	6 <i>a</i>	1 <i>d</i>	1 <i>c</i>
+	4 <i>b</i>	2 <i>a</i>	11 <i>d</i>	4 <i>c</i>
+	5 <i>d</i>	3 <i>a</i>	3 <i>d</i>	12 <i>c</i>
_	7 <i>b</i>	6 <i>c</i>	6 <i>b</i>	4 <i>a</i>
_	2 <i>b</i>	5 <i>c</i>	5 <i>b</i>	1 <i>a</i>
+	8 <i>b</i>	5 <i>a</i>	12 <i>b</i>	8 <i>c</i>
+	9 <i>b</i>	7 <i>a</i>	7 <i>d</i>	9 <i>c</i>
+	1 <i>b</i>	8 <i>a</i>	8 <i>d</i>	10 <i>c</i>
+	11 <i>b</i>	11 <i>a</i>	9 <i>d</i>	13 <i>c</i>
+	10 <i>b</i>	10 <i>a</i>	13 <i>b</i>	3 <i>c</i>
_	13 <i>d</i>	7 <i>c</i>	4 <i>d</i>	13 <i>a</i>
_	12 <i>d</i>	11 <i>c</i>	10 <i>d</i>	12 <i>a</i>

Integer Planar Diagram Code: Example

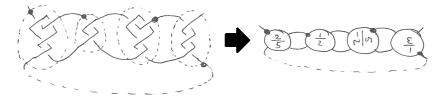
Example: (2/5) + (1/2) + (2/5) + (1/3)



- (2/1)0 NW 2 NW 3 SW 3 SE (P:0)5 SW (1/2)1 NE 6 NW 3 NW $(P:\infty')$ 2 SW 0 SW 1 SW (1/2)1 SE (P:∞) 0 SE 6 SW 5 NW (1/3)0 NE (P:1) (1/-2)4 SE 6 SE 6 NE 2 NE $(P:\infty)$
- (2/-1)2 SE 5 SE 5 NE 4 NE (P:0)

Rational Planar Diagram Code: Example

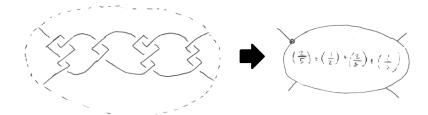
Example:
$$(2/5) + (1/2) + (2/5) + (1/3)$$



- (2/5) 0 NW 2 NW 2 SW 0 SW (P:0)
- (1/2) 1 NE 4 SW 4 SE 1 SE (P: ∞ ')
- (1/3) 0 SE 4 NE 4 NW 0 NE (P:1)
- (5/-2) 3 SE 3 NE 2 SE 2 NE $(P:\infty)$

Algebraic Planar Diagram Code: Example

Example: (2/5) + (1/2) + (2/5) + (1/3)

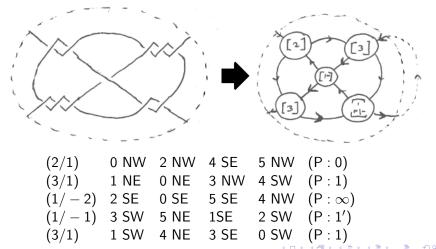


$$(2/5) + (1/2) + (2/5) + (1/3)$$
 0 NW 0 NE 0 SE 0 SW $(P:\infty)$

Building on Conway
Diagrams and Graphs
Distinguishing Algebraic and Non-Algebraic Diagrams
Algebraic Planar Diagram Code

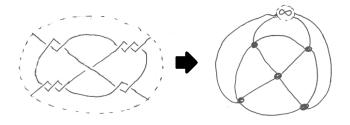
Algebraic Planar Diagram Code: Non-Algebraic Example

Example:



Connection with the Maximal Algebraic Subtangle Graph

The algebraic planar diagram code describes the MASG.



Each generalized planar diagram code is refined from the preceding:

$$PD \rightarrow IPD \rightarrow RPD \rightarrow APD$$

Table of Contents

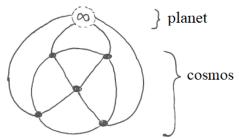
- Background
 - Introduction
 - Tangle Diagram Notations
 - Tangle Classifications
- 2 Describing Diagrams with Graphs
 - Building on Conway
 - Diagrams and Graphs
 - Distinguishing Algebraic and Non-Algebraic Diagrams
 - Algebraic Planar Diagram Code
- Constellations
 - Properties of Constellations
 - Constellation Notation

A New Type of Graph: Constellations

Definition

A k+1 constellation (C,p) consists of a graph C with k+1 vertices which is <u>connected</u>, <u>planar</u>, <u>4-regular</u>, and <u>simple</u>, and a marked $k+1^{st}$ vertex p.

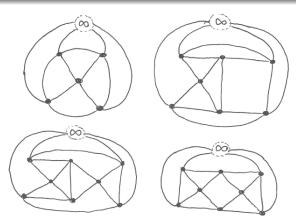
- The $k + 1^{st}$ vertex p is called the **planet**.
- The induced subgraph $C^* = C \{p\}$ is called the **cosmos**.



Constellation Examples

Definition

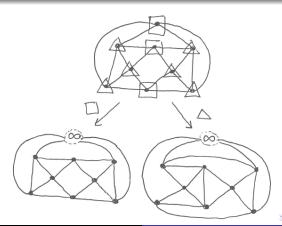
Two constellations are **equivalent** if they have isomorphic cosmos.



Changing Planets

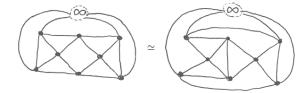
Theorem

A different choice of planet may yield non-equivalent constellations.



The Two 8+1 Constellations

These two graphs are isomorphic.



These two subgraphs are not.

Constellation Adjacency Matrices

Theorem

Let G and G' be graphs with adjacency matrices A and A', respectively. Then G and G' are isomorphic if and only if A and A' are permutation symmetric.

```
      TO
      1
      0
      1
      0
      1
      0
      1
      0
      1

      1
      0
      1
      0
      1
      0
      1
      0
      0

      0
      1
      0
      1
      1
      1
      0
      0
      0

      1
      0
      1
      0
      0
      1
      1
      0
      0
      1

      0
      0
      1
      1
      0
      0
      0
      1
      1
      1

      1
      1
      0
      0
      1
      1
      0
      1
      0
      1
      0
      1
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      1
      0
      0
      0
      1
      0
      1
      0
      0
      0
      0
      <t
```

```
\begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}
```

Cosmos Adjacency Matrices

Theorem

Let G be a graph with adjacency matrix A and let p be a vertex in G. If $G' = G - \{p\}$ is the subgraph of G obtained by removing p, then G' has adjacency matrix A' obtained from A by deleting the column and row corresponding to p.

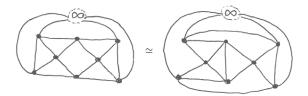
Γ0	1	0	1	0	0	1	0	17
1	0	1	0	1	0	1	0	0
0	1	0	1	1	1	0	0	0
1	0	1	0	0	1	0	0	1
0	1	1	0	0	0	1	1	0
0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0
0	0	0	0	1	1	1	0	1
_1	0	0	1	0	1	0	1	0]

	Γ0	1	0	1	0	0	1	0	1
	1	0		1					
	0	1	0	0	1	1	0	1	0
	1	1	0	0	0	1	0	0	1
6	0	1	1	0	0	0	1	1	0
	0	0	1	1	0	0	0	1	1
	1	0	0	0	1	0	0	1	1
	0	0	0	0	1	1	1	0	1
	1	0	0	1.	0_	,1,	₌ 1,	0	0_

The Galaxy of a Constellation

Definition

Two constellations (C_1, p_1) and (C_2, p_2) are **familiar** if their underlying graphs are isomorphic, $C_1 \cong C_2$.



Definition

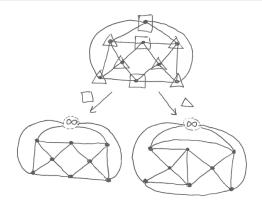
The **galaxy** of a graph⁴ C is the set of equivalence classes of constellations (C, p) arising from any choice of planet p.

⁴connected, planar, 4-regular, simple

Galaxies and Familiarity

Corollary

All constellations in the same galaxy are familiar to each other.

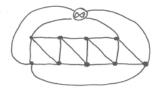


9+1 Constellations: Galaxy 1

Theorem

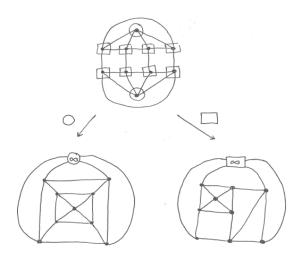
There are exactly three galaxies of 9+1 constellations.

Each 9+1 galaxy contains a different number of constellations.

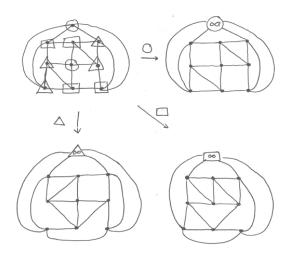


Any choice of planet in the above yields an equivalent constellation. The galaxy of this graph contains only this single constellation.

9+1 Constellations: Galaxy 2



9+1 Constellations: Galaxy 3



Combinatorial Observations

k + 1	Number of Constellations	Number of Galaxies ⁵
5 + 1	1	1
6 + 1	0	0
7 + 1	1	1
8 + 1	2	1
9 + 1	6	3
10 + 1	≥ 13	3
11 + 1	?	13
12 + 1	?	21
13 + 1	?	68
:	i i	i :

⁵http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html#PLANAR

Constellation Notation for Non-Algebraic Tangles

Definition

A non-algebraic tangle diagram can be described using sums and products of rational subtangles and constellations:

- use constellations in place of non-algebraic subtangles;
- list out the algebraic subtangle components;
- order tangles by encounter and indicate parity.

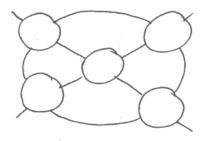
Example:

$$\underbrace{C_{5+1}^{(1)}}_{\text{constellation}} \left((2/1)^0, \underbrace{(3/1)^1}_{\text{subtangle}}, (1/-2)^{\infty}, (1/-1)^{1'}, (3/1)^1 \right)$$

The subtangles come from the algebraic planar diagram code.

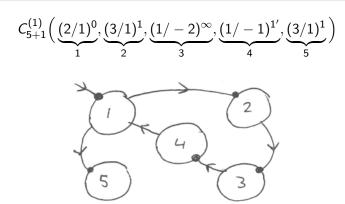
Reconstructing from Notation: Cosmos

$$\underbrace{C_{5+1}^{(1)}}_{\text{constellation}} \left((2/1)^0, (3/1)^1, (1/-2)^{\infty}, (1/-1)^{1'}, (3/1)^1 \right)$$



This tangle uses the cosmos of the 5 + 1 constellation.

Reconstructing from Notation: Component Order



The parity of each component forces the location of the next component. In this example, the ordered parities are $(0,1,\infty,1',1)$.

Reconstructing from Notation: Filling in Components

$$C_{5+1}^{(1)}\Big(\underbrace{(2/1)^0}_1,\underbrace{(3/1)^1}_2,\underbrace{(1/-2)^\infty}_3,\underbrace{(1/-1)^{1'}}_4,\underbrace{(3/1)^1}_5\Big)$$



Insert appropriate subtangle construction into each component.

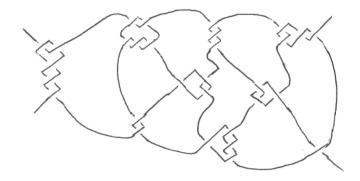
Reconstructing from Notation: Drawing Subtangles

$$C_{5+1}^{(1)}\Big((2/1)^0,(3/1)^1,(1/-2)^\infty,(1/-1)^{1'},(3/1)^1\Big)$$

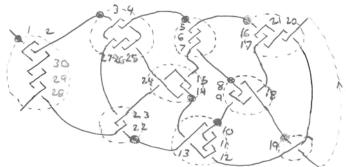
Finally, draw in algebraic subtangles given by construction.

Example: Scary Non-Algebraic Diagram

How to describe this diagram?



Example: Gauss Code

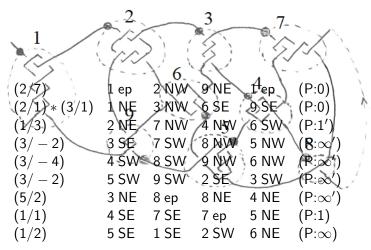


 $\begin{array}{l} (|\text{-b1-a2-b3-a4-b5-a6-b7+a8+b9-a10-b11-a12-b13+a14+b15-a7-b6-a5+b16+a17-b18+a9+b8-a18+b19}(|)+\text{a20+b21+a16+b17+a21+b20+a19-b12-a11-b10-a13-b22-a23-b24+a15+b14-a24-b25-a26-b27-a3-b4-a25-b26-a27-b23-a22-b28-a29-b30-a1-b2-a30-b29-a28}|) \end{array}$

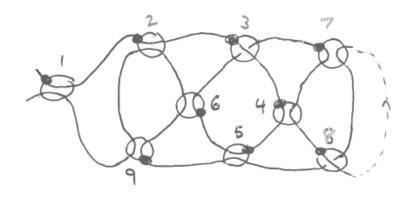
Example: Planar Diagram Code

_	2 <i>d</i>	2 <i>c</i>	30 <i>b</i>	28 <i>a</i>	+	17 <i>b</i>	5 <i>a</i>	21 <i>d</i>	17 <i>c</i>
_	3 <i>d</i>	30 <i>c</i>	1 <i>b</i> _ :	1a	+	18 <i>d</i>	16 <i>a</i>	16 <i>d</i>	21 <i>c</i>
_	4 <i>d</i>	, 4c	27b)	22a	5	19 <i>b</i>	9è 2	0.8d	17 <i>a</i>
_	5d	25 <i>c</i>	3 <i>b</i>	/3a ,	(5)+	12%	18a	20 <i>d</i>	20 <i>c</i>
_	16b	>6€	67	4a\	X-X	21 <i>b</i>	\21a	19 <i>d</i>	19c
_	7 á	5c	5 <i>b</i>	7a24	\\\\\	20 <i>b</i>	- 20a	1₹\d	16 <i>c</i>
_	6d	8c	15a	6 <i>a</i>		a 28d	2 3 c	23 <i>b</i>	13 <i>a</i>
+	9b -	₹9a	7b	180	(24d	- 22 <i>c</i>	22 <i>b</i>	27 <i>a</i>
+	8 <i>b</i>	8 <i>a</i>	18 <i>b</i>	10č	1/2	₹ 2 5 <i>d</i>	15c	.14d	23 <i>a</i>
_	11 <i>d</i>	13 <i>c</i>	9 <i>d</i>	11a	1/3/2	26d	26c	4 <i>b</i>	24 <i>a</i>
_	10 <i>d</i>	12 <i>c</i>	12 <i>b</i>	10 <i>a</i>	· · · ·	27d	27c	25 <i>b</i>	25 <i>a</i>
_	13 <i>d</i>	11 <i>c</i>	11 <i>b</i>	19 <i>a</i>	_	23 <i>d</i>	3 <i>c</i>	26 <i>b</i>	26 <i>a</i>
_	22 <i>d</i>	14 <i>c</i>	10 <i>b</i>	12 <i>a</i>	_	1 <i>d</i>	29 <i>c</i>	29 <i>b</i>	22 <i>a</i>
+	15 <i>b</i>	15 <i>a</i>	13 <i>b</i>	24 <i>c</i>	_	30 <i>d</i>	28 <i>c</i>	28 <i>b</i>	30 <i>a</i>
+	14 <i>b</i>	14 <i>a</i>	24 <i>b</i>	7 <i>c</i>	_	29 <i>d</i>	1 <i>c</i>	2 <i>b</i>	29 <i>a</i>

Example: Algebraic Planar Diagram Code



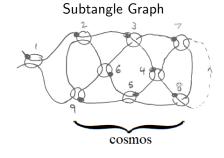
Example: Algebraic Subtangle Components by Parity

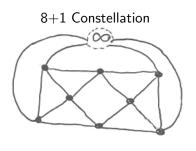


APD Gauss Code : [1, 2, 3, 4, 5, 6, 3, 7, 4, 8, | 7, 8, 5, 9, 6, 2, 9, 1]

Parity Vector : $(0,0,1',\infty',\infty',\infty',\infty',1,\infty)$

Example: Identifying Cosmos of 8+1 Constellation

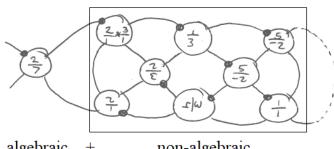




APD Gauss Code : [1, 2, 3, 4, 5, 6, 3, 7, 4, 8, | 7, 8, 5, 9, 6, 2, 9, 1]

Parity Vector : $(0,0,1',\infty',\infty',\infty',\infty',1,\infty)$

Example: Constellation Notation



algebraic

non-algebraic

$$T = (2/7) + C_{8+1}^{(1)} \left((2/1) * (3/1)^{0}, (1/3)^{1'}, (3/-2)^{\infty'}, (3/-4)^{\infty'}, (3/-2)^{\infty'}, (5/2)^{\infty'}, (1/1)^{1}, (1/2)^{\infty} \right)$$

Parity Vector : $(0,0,1',\infty',\infty',\infty',\infty',1,\infty)$

Constellation Notation Summary

Benefits:

- compact notation for non-algebraic diagrams
- combines with sum/product notation
- construction intuitive to visualize

Drawbacks:

- always assumes internally canonical components
- only helpful for known constellations
- classifies non-algebraic diagrams, but not tangles

Major Advantage:

preferring canonical components eliminates many redundancies

